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I . DDPM
We start from the introduction of a class of

autoencoder algorithm. We will see that the DDPM

is nothing but a special VAE algorithm.

1 . 1 . Evidence lower bound.

Like traditional autoencoder algorithm , given
observed data X

, we imagine there is some

latent variable as a lower-dimensional

representation. Our goal is to learn a model

to maximize the likelihood PoIX). However
, optimizing

Polx) Can be hard for some complicated distribution ,
thus

for fixed p, we consider an Evidence Lower boand (ELBO) :

logpp(x) = log)Pp(X ,
z)dz

->
learnable encoder

= log) MXEGdz .... ELBO
(Jensen)

-

1Eqp ,z/xFog1] ....ELB



Remark : From (ELBO1) me can see a close

relationship between ELBO and EM-algorithm. In

EM-algorithm we use Plz/X ; Pold) rather then

the encoder Ep1z/X).

Butme are not satisfied with this derivation , because

it only implies that IELBO) is a lowerbound of
the log-likelihood but the Jensen's inequality

my steriously hides the reason
.

Let's perform another

derivation :

logp(x) = (G1z(x) - logpp(x)dz
= lEgizIxs[logppix)]
I

=

IEqz(x)[log
= IEqIz(x)Hlogg&

=

1EGp1z/x~)+z)Hog
ELBO



= Egp1z(x) (logP+41z(x)11Pp(z(x))
zo

=Egp1z(x)(log
This derivation reveals the reason we can maximize

the ELBO loss :

ELBO

- Encoder True posterior

logp(X) =

Eqp1z(x) (log P + k((81z(x)11Ppz(x))
- 7

Like hood :

N
. -... (RM)

-

Independent
With I ELBOT => KL1fp/Po) ↓

&hemark : For a fixed p ,
the log-likelihood is a constant

of 4 ,
thus maximizing the ELBO w. r. t . I will

effectively push the KL-divergence between Gp1z/x
and Polzkx) to zero which is desirable .

Therefore ,
we consider a new objective function :

L(0) =

maNELBO) = malpzxlog) .



1. 2 . Variational Autoencoder (VAE)
With ELBO , the default formulation of
rAE is simply maximize the ELBO :

mex(() = max1Eqpizix) (logO O , !

= max IE

0. Ep1z(x)/1og
reformulation of ELIO :

= meEqpz(x Hogpp(X(2))+ 1Eqpizx) Hog,
13

0 . 4
VAE :

= me (Eqp1z((log5o(x(z) -

KL(81z(x)11p(z)))
.

p, ↓ ↓
d prior

Learnable encoder Learnable decoder ..... (VAE)
- -

reconstruction prior matching
term term

he mark Combine (VAE) and1RM) We have
-

logpo(X) - k((qp(z(x)(100(z(x))
= 1Eqpzix(ogpo(X(21) -KL(8p1z(x) /1 p(z))

.

The LHS is exactly what we want to maximize :

· We want to seek fora maximizes Po(X)

· We want to minimize the encoder Go and the true posterior Po.



With the optimization problem (VAE), What
to train in practice ?

· Prior matching term : We typically choose a parametric

model for G01z/X) and the prior P(z) .
A

common choice is -MLP -

Encoder : Gp(z(X) =NIZ : Mp(x) & 5(x1)
-

-

Prior : p(z) = N1z ; 0, 7) .

For Gaussian distributions , the explicit form of
the KL-divergence is avaliable.

· Reconstruction term : First of all ,
we will

learn a deterministic function through neural -

network as the decoder function Polx(z)

Decoder: Mean of to < MLP



Then by Monte-Carlo Simulation We can sample

zil ind Gp1z/X) and estimate the reconstruction

term by
(i)log Vol * /2).

However, zi's are intrackable with respect to o

because they are random samples. Therefore , we

typically use the reparametrization trick :

z(i) =Mp(x) + Op(x)0q(l) ,

where gisid .

No , 21. Now Ill's are represented
as unction of 6.I



Given training set 341"be initialise 60 ,
0

for iteration teto, 1
, ..., i] do

Sample mini-batch( = (x11)
, ..., x191324X13,

Sample Z
(i)

=Ma) + Op(10 gl ,
i = 1, 2, .... K

K

Compute : -z logt (xili)/ ziil)O
ki= 1 t

Update OtH and AtH by backpropagating the gradients
of IVAE)

.

end for

1 . 3 Hierarchical VAE
A hierarchical VAE is a generalization of a VAE

that extends to multiple layers of latent variables,
: . e . higher level latent variables are permitted.

Let the joint distribution of IX ,
2:+ ) and the

posterior distribution (encoders be

p(x , 2 . + ) = p([+ ) ppIX( ,Polze+ (2+ )

gp12+ (x) = gp12(XEplzz/Et-1) .



The the ELBO objective can be derived as

logpp(X) = log) pp(X , [+) dz, +

= log/P,ZTGZtxd
(Jensen)

17.+ /x)) log  x)
ELBO

decoder
prior

=

qp1E+ /x) /logCPIXI1Zt+ 12+) SGp (2,/x)28p 12+ (2+-1)

L encoder

... CHELBO)
X

Z *

2 ,
Za

22
23

812 ,/x) Ep1zz/21) Yol2s(2) Volzz Volziliy
Noki

(2s)
> Illi > >

prior: plzs)



1 .4
. DDPM

.

The DDPM can be seen as a special case of
UVAE With the following restrictions :

① The latent dimension is the same as the

data dimension. Thus we will simply use to to

denote the original data and Xt ,
171 to denote

the A-th layer of latest variable.

② The encoder is not learned ; it is predefined by
a Gaussian transition model , i. e.

Encoder

& + -1) = N(Xt ;M+ (X+ ) , [+ (X+ )),

where M+ (x) : = + X+ - 1
,
[+(x)= 11 h+ )7

By reparametrization trick ,
we have the forward step :

Forward : Xt = k+ X+ -1 +M+ E ,
gnN(0, 1)

step

③ The distribution of the latent at the final step T,

i. e . the prior distribution p(X+ ) ,
is NIX+ 0, 7)



To learn the backward Step PolXt-(Xt) , We derive the ELBO :

logpoix) = Egi+(xo) /log Poloxi) Po(Xt- (X+)

II
different from CHELBO)

q(X+(x+-1)[, g(X+ /X+-1)

the encoder is not learnable 80 .

I 1EqIX1+Ixo)/log
=

/EgIX1: /xo) /LogPOL
t= 1

tEg.= Eq(X1 + (x0) /log PolXo(X, ))

+ IEq(X
++,

X+1x0) /log+)
T-

+ EIEg(X+ +,
X+, X++/X)

reconstruction term

=EgiXxo/log Po(Xo(X , ) prior matching term
-#Fit(x+ (20s [2(834+ (x+-11p(x+1)---

consistency term

T-1-
-

E IE [k((q(X+(x+-1)(lPo(X+ (X+ +1))]g(X+-1 , Xt+ 1 /Xo) forward backward



Thus the training of the backward step is performed by
maximizing the ELBO :

argmax & (Eqix(xos) log polX/X:)
O

- EgIXt-()[kL(q(X+ /X+-1)11p(X+3)]
+ +

IE- I
A =

1 g(xe- ,
(++(vi)[kL(q(X+ /x+-1) (lP0(n+/X=+1)))}

-

.... (DDPM)



Remark--

a) The reconstruction term maximizes the log-likelihood

of the original data given first layer latent.

b) The prior matching term is minimized when

the final latent distribution matches the prior.

c) The consistency term endeavors to make the

distribution at X+ Consistent
, from both

forward and back forward process.

However
, the empirical estimate of(DDPM) often

suffers from high variance due to the consistency

term is taking expectation on two random variable.

Therefore we try another formulation in practical

usage.



· A low-variance reformulation of (DDPM)

log poix) =Egi(x) /Log Poloxi) Po(Xt- (X+)

Iq(X+(x+-1)[, g(X+ /X+-1)
same as before

=

EqI+(x0)/logPoloxi) Po(Xt-(X+ )

Ig(X, /Xo)
, G(X+ /X+-1)

= (Eg(x1 :+ (X) /Log P+
payesre ty)

= (Eg(1:+ (X)/Log
(telescope sum)

=

lEq(Xi + (xo) (logPl- + log
log

= EqIX1+ /x) /log ON



= Eq(x ,/xo) (log poiXo(X,)
- Eq(X+ /Xo) /log 1)
+ EgIXt ,

X+-1/Xo) /logt= 2

reconstruction term

-

= 1q(x ,/xo) (log poiXo(X,)
prior matching term

-
- kL(q1X+ 1x0) 11 p(X+ 1) denoisingmatching term.
-

- Eqix+/xo) [k((g(x+-1(x+, xo(((pp(X+ -1(x+ )))
underlying backward
true backward decoder

g(x+y (xt) =Ax+ (X++ )q(X+-1)

G(x+ ]
Thus by considering the ELBO We have

the equivalent form of (DDPM) :

q(x+ ) =SG(x+/Xo)E

g(x+ -/xx , x0) = g(x(X++



Lo

-

organ
, YEg(Xx (log Po(Xo(X ,)

LT

-
- kL(q(X+ (x0)11p(X+))
- -

LVc1 (dominate term)

T=>
Eq(x+ Ixo) (kh(q(xt-1 /Xt, Xo) (lPo(x+ - (X+ ))))
-

Lt -1

T
:= argues z

Lt. .... (DDPM-LV)
O A= 1

Now
, we are ready to discuss training based on the above.

The following component is needed :

① Forward Step : &(x+ /Xt-1) ,
t = 2, . .

.. +

② For any tElT] : q(X+ /Xo)

③ Backward Step : g(Xt-1 ( Xt , Xo) , + = 2
, . . . T

.

④ Prior distribution : p(X+ )



1 . 5 . Training : Leverage Gaussian Kernel
For arbitrary posteriors in IDDPM-LV) ,

the

KL-diverge can be difficult to minimize.

Fortunately , we can leverage the Gaussian transion

assumption to make the KI-divergence trackable.

becap that ①
Forward Step :

q(x+/X+-1) =NIX+i exey
, (l-Ct)1),

and by the Bayes rule we have the true transition : ③

Backward Step : g(Xe-11Xt , Xo) = q(x+ /X+,Xo)
(X)

T - G(Xt(o) ,

important to depend
= q/X+/Xt-1) (Markovon Xo

, g(x++1(Xt) is ..... (BS)
intractable

We only need to find &IX+ /Xo)
.

In fact , we only
need note

Xt = k+ X+ + +Fx+ Et+

= + (tyX+ -2 + C++ Etz) + t Et-1

= x++ X+ - 2 + Nex+ +
E+- + FC E++

(by Ex2)= +++c++Fct2 E+ - 2

=

+x++ Y+ 2 +x(+ + C+
E+ -2



-- .. - - -

= Xo + t Eo ..... (NP)

where I+ = < + x+
... d

..
Thus ②

For any telt]
: q(x+ /Xo) = NIX+ i Xo

,
(1-[+) 1 )

.

By taking this into (BS) ,
we have the

true backward transion is derivation see Appendix
④

Backward
g(x+ - (X +, Xo) =N(X+-1 ; Mq(X+, Xo) , Eglt)) ,

Step :

---- (TBW)
where

Mg( ,
Xr) = Cell-the .... (TBW-M)

=q(t) = )-

Now we are ready to discuss training.

Training of PolXt-1(Xt) :

Since the underlying true backward transition is

Gaussian , it is reasonable to assume PolX+-1(X+)

as a Gaussian distribution as well.



Suppose
MLP

PolXt-1(xt) =N(X+ +1 :Mo(X ,+) ,
[o(Xt , t))

.

---- ILBW)
We first fix

[0(X+, + ) = [q(t) -> known .

and have the networkterns only the mean.

comparison :

known known

True: g(X+ - /X +, Xo) =NIX+-1 ; Mq(X+, Xo) · Ight) )

trainable MLP known /

Train : Po(Xt-1(xt) =N (X+ +1 :Mo(X ,+) ,
[o(Xt , t))

.

By ITBW-M) ,
me can set MolXe ,

+ to be
MLP

-> predict
X.

Mole+= 15ExtF
where Yo(Xt

, 1) is a neural network to predict Xo

from the noisy image X+ [Denoising ! 3.

By leveraging the explicit form of KL-divergence

between two Gaussian distributions[see , equation

186) in(u0 12021)]
,
and the exact distributions



(TBW) ICBW)

of q(X+-1/Xt , Xo) and Po(Xe-(Xt) ,
we have

for fixed Xt ,

argmin KL (f(Xt-1(Xt , xo) 11 Po(Xt-1(X+)
O inup

=

arguin KL /NIXiMg , Eqht)/N(Xte : p ,Eghs
um

O

= arguin x x

where Egt):=L ·
Please findthe

detailed derivation inLu 12021) pp. 13 and Chan (2024)
pp . 23

.

Therefore maximizing (DDPM-LV) can be

approximated by minimizing the follow :

I IE-

orgmin Tt=

1 i G X+ (x0) [x()110(+, + -xol2]]
O

where (t)=
--

(P1)



DDPM : Training :

Given training set b , number of iterations H.

for Keto, 1 , .... H] do

Draw Xo from $

for itto, 1 .
.

... NJ do

Sample ~ Unif[I , T]

Sample Xt -q(x+ /Xo) =N/X+ : - Xo , 11 -[t) 1)

X+
= [

= XotFee +, E+
-N10 , I)

Take gradient descent step on

Doll Yo(Xe ,
+ ) - Xoll

end for

UpdateO

end for



With trained Yo , we have

Pp(Xt-1(X+ )
= N(X++;Molx ,+) ,

[o(Xt , t))
.

=>Yt-1 =
(1 - [t-1)Et

x+
+(-2x)++ Yp(X=, t)

+ 5qH)2+
1- + 1 - +

..... (Inf)
DDPM : Inference

Given trainedYo and a white noise X +2NI , 1)

for telt , T+, ..., 1] do

Calculate XpIXt , + >

Update Xt according to (Inf)
end for



· Correctness of DDPM . [Nakkiran eal. 12024) PP .
9. ]

In the previous discussion, We use Gaussian

model to estimate Pp(X+-(x+) because

g(Xt+ /Xt , Xo) is a Gaussian distribution by
derivation. However , we arecutually interested to

model q(Xt-1(Xe) ,
i. e

. the underlying true

backward distribution
,
then doesqext-1(x+)

close to Gaussian ?

what we estimate : What we are interested in :

q(X+ - /X+, Xo) & (x + -1(Xt)
[Gaussian]

E(X+ - (X+, Xo) ((X+ - 1 /Xt)



1. 6 Equivalent perspectives .

From the derivation of IP1) We see that the DDPM

can be interpreted as learning a neural network

to predict the original image to given a noisy
image Xt .

In this section , we consider two

other interpretations.

2. 6 . 1.
.
Random error estimation

Recall the underlying true mean value of
the backward transition is given in CTBN-M)

as :

Mg( ,
X) = Cell-the

Et+ t Ex
X

Leveraging the nice property (ND) ,
we have

EtIt



Taking this into the form of Mq(Xz , Xo

we have

My (X+, Xr) =

V+
(t [

-1)X+ +m+ (th+).An
-

1 -

+

&·
-t+ 11-ht)X+-+ (1- 2x)

=-
There we can set Moxt , + ) to be

-Mo(X ,+)= X +
- #C Ext, ,

where Eo(Xe
, t) is a nearal network to estimate

Et given the noisy innage Xt .



Taking
the new form of Mo(X,+ ) into the

explict form of KL-divergence we have

arguinkL(g(xt- (Xt , Xoll Po(X+ -11X+ )

= arguin + -Ext-

↓
random error estimation

Thus maximizing IDDPM-LV) is almost
equivalent to the following optimization :

argmin [x(t) Eq, x+)
/Ex - YolXe

,
+)112

O

Ho et al . (2015) use this "noise prediction" formula and empirically

outperforms the previous " signal prediction" formula.



1. 6 . 2
.

Score function estimation
In this section

, we will utilize Tweedie's formula

[See Efron Doll)] throughout the analysis.

Mathematically , for a Gaussion variable

2 - NIz ; M , z) ,
Tweedie's formula

States that
PX pXP PX/

E[u(z] = z + z . xlogp (z). .... (TW)
·

-

↓

morginal of z

Recalling that

q (x+ (x0) = N(X+ i Xo
,
(1-[+) l) ,

-

equivalent
to given u

thus (TW) implies that
Xo

Il

E Mx+ (xt) = X+ + (1 -2+) · xlogp(Xt) ,
m

this the LHS of the above can be seen as

an estimator of MXx = Xo. Therefore



Xo = X+ + (1 -[t) · x log (xt)

↓

Xo(Blog pe

Taking this into MgiXe , t) ,
we have

IE(X+-1/ X+, Xo]

MqiXt+) = 11-th
-(tr(X++E (the)* Dlogp x
-

-

1- Xt

I

=
-

Therefore we can set Moxt , +) to be

Mo(X ,+) = * X + + So(Xt , +)
,It

where Spixit) is a neural network to estimate

the score function log IX). Then she



Corresponding optimization problem becomes

arguin Dish (g(x-1(xt , X0(11 Po(Xe+ (x+)

= argain t
"

[Spixt) - logpx-
↓

estimate the score of a noisy image.
Thus the final optimization problem becomes.

XA)again qi(Xo) [NSplXe . +) - Dlogpixe)112]
O

-.. (DDPM-SM) .

where 11)=
Remark : Xlogp(Xe) is intractable , because the

underlying true marginal distribution of Xt is unknown.

Here we introduce score maching trick to solve this

problem. -



Score matching trick
Note me have the following identity

Xt

↳log (x)=
=) p(X+(x)D(x) &X .

p(X+ )

-&x p(X+ /xo) p(x) dx

p(xo , X+ >a
p(Xt)

xz(logp(x+ (xo)) p(xo , X
+ )dx

p(Xt) .

= S (x=(logp(x+ (xx))p(xo(x+ )dx

= Ep(xo(x+) [Tx, logp(x= (Xo)]



= ETPx+ log piX+ /Xo > ( X + ]
.

We use the following property of conditional expectation
:

ETY/r]= armin (EllY- fIWill].
feL(u)

Then we have

T log p(X+) = argain (E11 Mx+ logp(x+ /Xo) - f(X+ )123
.

feL
2

(Xt)
.

Cremark Blog plX+ /Xo) is tractable by forward transition.

Thus in order to train a neural network that

approximate xlog p(Xt) ,
we consider the following

optimization : [X+ -07

↑
orain x q(X) [xt) -M logp(x+(x)())

..... (DDPM-C)



2. Score-based generative model

I Mainly based on

Yang Song. Generative Modelling by Estimating Gradients of
the Data Distribution . (Blog)

Song and Ermon (2019).

2. I . Score function

i . und.

Suppose X .. .... Xu ~PolX) =-fol , the main

difficulty of applying MLE based method is that the

normalizing constantTo might be intrackable. By modelling
the score function instead of the density function can

side step the issue.

Consider the score function

* log plX).

Sinc Xx (ofppix) = *x(-logzo - foIx) = - >fol , we



don't need to worry about the introckable normalizing
constant anymore.

Therefore , we can train score-based models by

minimizing the Fisher- divergence between the model

and the data distributions by

min E [llSp(X) -Xylogp(X (112)p(x)
score network

Although the Fisher diverge is infeasible to compute

directly due to the unknown formulation of data

Score Xylogix) ,
there exists a family of method called

score matching that minimizing the Fisher divergence
without knowledge of the ground-truth data score.

[See Song and Ermon (2019) for details.



2 . 2 . Langevin dynamics
Once we obtain a trained score-based model

So (x) = Flogpix) ,

we can use Langevin dynamics to draw sample from

p(x) · Specifically ,
it initializes any Xo-RIX) Some

prior distribution ,
and iterates

.... ()

Xi+< Xi + < Plogpixi) +&Zi , i= 1,
2, . . ., K

.

where E: ~ No , 1) .

When to and K- ++,

Px
,

(x) -> p(X) .

Sinc So(X)- plogpix) ,
we can produce samples by

plugging it into 12).

themarks : For every X
, taking gradient of its log-likelihood

with respect to x essentially describes what direction in data

space to more in order to further increase its likeliherd.

Intuitively ,
the score function defines a vector field over



the support of pix) pointing to the modes.

Now we can summarize the key idea of the framework

of score-based generative modelling :

O Train a score network S.t.

So(x) = Dlogyix)
② Approximately obtain samples with Langevia dynamics
using So(X).

Three Challenges : [See Song and Ermon 12021)]

a) For Low-dimensional data lies in a high-dimensional

space , xlogpixs is ill-defined.

b) The estimation on low-density area is not

reliable.

c) For mixture distribution , Langevin dynamics can

not correctly recover the weights.



2 . 3 . Score-based generative modeling
with multiple noise perturbations

[Song and Eraon (2021)]

Song and Ermon 12021) Observes that perturbing data

with random Gaussian noise solves all of three challenges :

a) Since the Gaussian noise supports on the whole

space, perturbing the original data with a

small Gaussian noise will support on the whole space.

b) perturbing with a Gaussian noise with a large
variance will raise the probability of the

low-density area.

c) perturbing withmultiple decreasing level of

noise can produce correct sample in relatively
small numberof steps.



2. 3 . 1. . Noise conditional score network
(NCSN)

Step1 .
Score matching on multiple noise levels.

Take isotropic Gaussion noise Zi - N10, 0:) such

that
0

,
<02 c ... 2.

Then we perturb the original data distribution to obtain

the noise-perturbed distribution :

Po(X) = Sp(x) N(X ; X
,

0: 1) dx

equivalently speaking .
We have

Xi = X + 5 : 2 ,
i = 1

, 2, . . ., 2,

where zvNo , 1).

The objective is to seek for a Noise conditional

score-based Network (NCSN) by minimizing

arguin)EP, i) - log]



However
,
the above optimization problem is actually

intractable because the underlying the data distribution

pixs is unknown . Fortunately ,
alternative

techniques known as score matching have been

proposed to approximate the solution.

Demising score matching [see Song and Ermon 120193]

In stead of approximate the score function of
the ground truth data distribution pixs ,

we

consider the noise distribution

Po : (x(x) = N(X ; X
, Fil)

,

Fit the noice distribution
We consider the new objective rather than pertubed

distribution. x

I
arguin is p ES , i) -g

B

I
= arguin -. ES,i) ]

O

...... (NCSN)



As shown in [Vincent, A connection between score matching
and denoising autoencoders. 2011) ,

the solution of

the above Sol , is = Nog Pr,
/ * ) almost

surely .

Step 2. Annealed Langevin dynamics.



2.4. Compare with DDPM .

-

Training
Wewe cap the score matching interpretation of DDPM :

(DDPM-C) :

orwin XA E
O q(X+ /Xo) [NSplX=.+) -Blog piX(x)11 2 ] ,

and the score-based method : ⑪ Equivalent !
2NCSN) :

againi -

They are exactly the same !!

- Sampling
As for the sampling part , both DDPM and

score-based method gradually decrese the level of
noise

, although different techniques are used.

In next section we will make the relationship between

these two more explicitly.



3. SDE Method

Recap of previous section :

hecall the basics of the DDPM :

· Forward Step :

Xt = + X++ + Nx+ Et

· Backward Step :

=
where the backward sampling relies on the score

orin EXA Eq . Xo) [SpX . +) -Mlogp(x+(x)11]
O



3. 1
. DDPM and SMLD in Continuous case

Question : What if the number of perturbation

steps approaches infinity in DDPM forward step
or the score-matching step of the score-based

method ?

· DDPM

By the Euler-Murnyama discretisation ,
the

following Variance preserve (UP) SDE

-> Wienier process
dX+ = - zx(t)X+ d+ + mu)dWt

coincides with the forward step of DAPM :

Xt = + X++1 + ↑Et
-

1- Xt

· Denoising score matching with Langevin Dynamics (SMLD).

Note in the Step 1 of SMLD , we consider

to perturb the original data Xo by an

increasing sequence of variance , i
. e.



& = Xo + 5: Zi ,
i = 1 ,

2, ..., L ,

where 5,
< J2 <... O2 . Therefore ,

this

forward step can also be written as

Yi+1= Xi+-! Ei
,
: o, . . .. h

.

where *
o

= Xo , 50 = 0. This is the EM

discretisation of the following Variane Exploding
S DE :

ax= N

We have successfully incorporate the DDPM and

SMLD in a framework of SDE !



3 . 2 . SDE Perspective
Nowme can consider a general SDE process :

dXt = f(X+, +)d+ + grt)dWt,
where fl .. + ) : R

&
-> Ra is a vector value function

called the drift Coefficient, gHER is called

diffusion coefficient·

Following previous discussions , each form of SDE

will define a way to addwise perturbation ,
thus

there are numerous ways to define the forward

perturbation step.

Reversing the SDE for sample generation

Any SDE has a corresponding reverse SDE
,
whose

closed form is given by

dx+ = [f(X+, +) -gu) xxlogp(X+ )]d+ +ga)dN+,



A = T , + -, . . .

., 0
,
and Pt(X) is the marginal

density function of Xt.

Thus solving the reverse SDE requires us to

known the terminal distribution P-C) and score

function Xx log P+
1 : 1. We train a time - dependent

score-based model So(X , t) , St.

So(X , +) = xxlog Pt(X).

The training objective for So(X , t) is a weighted
combination of Fisher divergence , given by

again E s [x(t) I Dxg(x) - So(x .t)12]·

Thus the reverse procedure is

dx+ = [f(X+, +) -g) Sp(xx , + 1]d+ +ga)dN+,

then the sampling procedure can be carried out by

the Euler-Marryama discretisation method.



Appendix.

Analytic Solution to OU-process .

Consider the OU-process :

& Xt =((0 - X+ ) d+ + odwe
,

Where We is she standard Brownian motion and

>0 , 0 and 500 are constants.

Solution :

Let Yz = X+ -O
,
when the original

OU-process becomes

dY+
= dX+

= - xY+
d+ + odW+ -

It can be seen from above that Yo have

a drift towards 0 With expontial rate 1.
This motivates the change of variable

Y = y +z+ #)2x = y+ 2
+

S

which leads to

& z+= et Ydt + e
+
&Y+



=(et
"
Yedt + etk( ky+ dt + odW+ )

= o + etodwe

= - etkdWe
.

The Solution to I can be obtained immediately

by involving the Ito - Integral

2+ = Is + of 24dwn

nevering the change of varible , we have

X+
= Y+ + p = e

- tkz
+ + 0

-Tk
= 0 + e

- +xz + De St in
dWuse

= 0 + et(s-0)eS+ o St -u)dWae

= p + (s -0)e
- (t -S

+ oS
t

- x(t-n)
dWa

.se
Thus

X +
= 0 + (s - 0)e +

(t-Softe-x-

u)dWn
.



Note

E(X+ (Xs) = P + (xs - 0)e
-k(+ - s)

Cov(XtIXs
,
X+ (Xs)

= E[(X +
- 1EXt) (Xx - EXy)(Xs]

= E[loSe = (t-u)dWa)(oSekit - u)dWu)]
= je- (t

+

t)[j edwa · Joe dWr]
= p2

- ((t++'

ETSs" edn]
- ((t+ t')

· Fe (e
2kminit,+)

- 1)

= jetlt-tett)
where the penultimate equality follows by the Ito isometry.
There we have the explicity solution to the

or-process
-x(++ S)X +

= 0 + (s 0)e (t
-

sC - e & We
2)



Euler-Marnyma discretisation

For SDE

dX+
= M(X+, + (d+ + 0(X+, + )dW+

with Xo = Xo and We is the Wierier process . If we

would like to solve the SDE on interval [0. T]. Then

the Fuler-Marnyama discretisation provides a numerical

approximation to the exact solution as follows :

· Partition the interval [0 , i] into N equal subintervals :

0 : To < T , < ... [N = T and At = T/N ·

· Set Yo : Xo
.

· recursively define you as

Yn+ 1 = Yn + M/Yn , In)Xt + 01Yn , in) DWn,

where &Wa = Winn-Wen.
-> Doucet et al .

Example : Consider the or-process

& Xt = (10 - X+ ) d+ + odwer

The the EM discretisation can be written as

Xn+ 1 = K00t + 11-Kot) Xn + Not En
,



where En is aStartand Gaussian U. U.

Example Consider Variance Preserving (VP) SDE :

dX+ = - =B(t)x+ d+ + mmdWt
Then , the EM discretisation of the above is

X+ +ot = X +
- zB(t)X+

0t +1 (N+o+
- W+ )

= X+ - [Bit , X+ot + E+

= (1 - P(t)ot) Xt + 0+ E+

Taylor 35 Fut X+ + to + So

expansion

Thus
Xt+ 1

= )X+ + BH)St -

which is same as the forward step of DDPM.

Example Consider the Variance Exploding SDE :

ax= N
Then the corresponding EM discretisation is

Xtot = X++



= X+ + tot- rict) Et
Thus

Xt+ 1 = X + +m++) -5(t)Et↑



It's Formula :

Let We be a Brownian motion and Xt be an Ito

process satisfies :

dX+
= M(X+ , +)d+ + 0(X , t)dWt

-

If fix+ = C(2 ,) ,
then Ye = f(x ,

+) is

also on it process satisfies :

die=( , t)d+ dx++ (Xx,+ )(dxt)"X

where IdX+ ) "given by : dt" = 0
,
didW+

= 0
, (dN+) = d+.

It follows that

d = (+,++ + ,+ ) = 0 + E(X+,+ )m)de
+
af (X+ ,+) · o d We

.

2X

Or in integral form :

t

Ye = f(X , 0) +J(X , u)+ t Xu
, u7 · 53Xu

, us

+ Xu , n) .M(Xu , u) du

+ 5. /n . u) . O(Xu , u) &Nu.& I


