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Abstract

With the development of computer science, people’s ability to collect data is becom-
ing stronger and stronger, and the forms of data are becoming more and more diversified,
which lead to an incridiable increasement of the dimension and size of the data. Thus,
a large number of high-dimensional statistical problems have come into being. Such
high-dimensional data is increasingly available in the fields of genetics, finance and the
Internet. For example, in the classification of proteins, we often sequence the gene pairs
of proteins to distinguish different types of proteins. However, in practice, due to the
high cost of gene sequencing, our sample size (n) is very small, while the gene pairs that
contained in each sample (p) are tens of thousands, which caused a "small n large p"
problem.

For such "small n large p" problems, classical methods tend to be fail or perform a
high statistical size. From the Marchenko - Pastur distribution we can see why this kind
of failure often happens in using of traditional statistical methods: in the case of the high-
dimensional data, the flunctuation of the eigenvalues of the sample covariance matrix will
significantly deviate from the flunctuation of the eigenvalues of population covariance
matrix. Therefore, the sample covariance matrix is no longer a reliable estimate for the
population covariance matrix and naturally, the sample correlation matrix will also no
longer a reliable estimate for the population correlation matrix. This fact leads to the
poor performance of many classical statistical methods in the case of high-dimensional
data. So, if the traditional methods are still applied to the high-dimensional data, then it
is probably for us to make a Type I error. Recently, it has become the main objective for
the modern statistics to propose new statistical methods to deal with the high-dimensional
data.

Because covariance matrix and correlation matrix both play important roles in many
statistical methods, the problem about the covariance matrix and correlation matrix in
high-dimensional statistical analysis always draw many attentions. Pearson covariance
(hereinafter referred to as "covariance") is often used to describe whether there exist a
linear relationship between two variables. Note that the real data often exist different
scales, such as: height and age, weight and the quantity of the food intake. The data on

different scales will make the covariance between two variables becomes uncomparable.
V-
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Thus, the covariance between two variables often needs to be standardized, which can
unify the scales of different kinds of data. This normalized covariance is called the Pearson
correlation coefficient (hereinafter referred to as the "correlation coefficient"). The matrix
that composed of the covariances between different variables is called the covariance
matrix, and the matrix composed of the correlation coefficients between different variables
is called the correlation matrix.

In statistical analysis, the problem of the equality of two covariance matrices and
correlation matrices is often paid great attention because many statistical methods are
based on the assumption that the covariance matrices or correlation matrices are equal.
For example, Fisher’s linear discriminant analysis is based on the assumption that the
covariance matrices of the two samples are equal. Therefore, in the analysis of high-
dimensional data, it is often necessary to check whether the population covariance matrices
or the population correlation matrices are equal, or our statistical method may be difficult
to be implemented.

On the problem of testing the equality of two covariance matrices and correlation
matrices, the traditional methods often apply the likelihood ratio test statistic, which was
proposed by Kullback in 1969. This method performs perfectly in the low-dimensional
case, but as we mentioned before, when dimension p relative to sample size n is very
large, the sample covariance matrix is no longer a reliable estimate for the population one.
Thus the likelihood ratio test statistic will lead to a high statistical size.

Based on this fact, we need to develop some alternative methods to replace the
likelihood ratio statistic method. Among many high-dimensional statistical methods,
one powerful tool is the random matrix theory. In this theory, we would like to get the
asymptotic distribution of a class of test statistics through establish the limiting distribution
of the "linear spectral statistic". The advantage of this method is that many test statistics
can be seen as a special case of the linear spectral statistic so that once the central limit
theorem of the linear spectral statistic is obtained, the limiting distribution of other specific
statistic is also obtained naturally. However, the disadvantage of this method is that the
inference of the aymptotic behavior of linear spectral statistic often involves complexity,
sometimes it is even impossible to get the central limit theorem of the linear spectral
statstic. In this paper, we will focus on using the statistical asymptotic method to study
the test for two-sample high-dimensional correlation matrices.

Another powerful tool to handle on this problem is to construct the extreme value
- VI -
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statistic. In Jiang(2004)’s work, he constructed an extreme value statistic for the one-
sample test of the high-dimensional correlation matrix for the first time and he proved that
this extreme value statistic wiil tend to a Type-I extreme value distribution. Jiang’s work
brought us some new insights on the test of correlation matrix. We can introduce the
extreme theory into statistical test problem and convert the problem of an extreme value
statistic into a problem of the sum of independent random variable. From here, the Stein’s
method can be applied to develop the central limit theorem of the extreme value statistic.

In 2013, Cai, Liu and Xia also proposed an extreme value test statistic M, for
the two-sample high-dimensional covariance matrices test, and proved that the limiting
distribution of M,, is also a Type-I extreme value distribution under some sparse settings.
Inspired by Cai ,Liu and Xia’s work, Cai and Zhang proposed a similar test statistic 7,
based on the supreme norm for the two-sample high-dimensional correlation matrices
test. And they assertted that the limiting distribution of this statistic will be exactly the
same as the limiting distribution of M,,.

But Cai and Zhang did not offer a strict proof for their assertion. Considering the
covariance matrix and correlation matrix are intrinsically different, for example: Kullback
proposed a likelihood ratio statistic based on covariance matrix and proved that this test
statistic converges to chi-square distribution, meanwhile, he also constructed a likelihood
ratio statistic based on correlation matrix but the latter test statistic is asymptotically
distributed as a linear combination of some chi-square distribution. Thus two kinds of
likelihood ratio statistic do not share the same distribution. So, although 7,, and M,, are
both constructed based on supreme norm, we still think it is necessary for us to give a
mathematical proof for their assertion.

Under this motivation, we strictly proved Cai and Zhang’s conjecture: we strictly
proved that the limiting distribution of 7}, is indeed an Type-I extreme value distribution
with exactly the same form as it is in the case of M,,. The method of proof is developed
similar to Cai, Liu, Xia’s way. Due to the independent assumption is not required in our
problem, the Stein’s method can not be applied directly.

In our method we first prove the consistency of the normalized part of 7,,, so we can
replace the sample normalized part with the population one. Through this method, we
simplify the denominator of 7,, to be its population form, which can be seen as a constant
directly. Then we use "truncation method" to prove that 7, could be approximated by

its "noncentralized" form, which means that we can assume the population means and
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the population variances are known. Thus we can use the known population mean and
population variance to replace the sample mean and variance, and further, we assume the
population mean is O and population variance is 1. Finally, by using the sparse assumptions
and Bernstein’s inequality we can obtain the limit distribution of 7,,.

In Cai, Liu, Xia’s work, a fourth moment condition is needed. This assumption is true
for all elliptic distributions, but we don’t know wheather it is true for more general case.
Therefore, we try to remove this distribution assumption. Hence, another contribution
of our work is that we deduced the limiting distribution of 7,, without any distribution
assumption but under some alternative sparse settings. This part is based on Xiao Han
and Wei Biao Wu’s work. They proposed an inequality to estimate the tail probability of
the multivariate normal distribution. Based on this inequality, we can further prove that
the asymptotic distribution of 7, is truely a Type-I extreme value distribution under some
sparse assumptions but without the forth moment condition. This generalization extends
the application of the theorem.

Therefore, the main contribution of our work is to give a theoratical proof for the
limiting distribution of 7,,. Further, we introduce a new sparse conditions, and establish
the central limit theorem in the distribution free case, which help to expand the range
of the application of the result. After that, we carry out some statistical simulations for
the normal distribution case and gamma distribution case, respectively. The simulation
results confirmed our conclusion that the Type-I extreme value distribution is a good
approximation of the distribution of 7,,. At last, we summarize the whole paper and give
some prospects: we want to to obtain the convergence rate of the asymptotic behavior of
T,, by Stein’s method, so that we can further propose a new limiting distribution of 7,, with

a higher rate of convergence.

Keywords: high-dimensional statistics, correlation matrix, extreme value theory
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Chapter 1 Introduction

1.1 Background and Significance

With the development of computer science, modern statistical data are increasingly
high dimensional but relative small sample size. Genetic data is a typical example
with thousands of dimensions but limited observations due to the high cost of collecting
data. The same situation is also commonly found in the fields of portfolio and risk
managerment. An involved statistical problem is to know whether two populations share

the same distribution or same key parameters, for instance, mean vector and covariance

si=sny,lsj=s

SIsm,lyjs

whose n, rows are i.i.d. p-dimesional random vectors with mean u, = (ua,. .., o))
and covariance matrix X, = (0ij2)pxp- Let Xi,...,X,, be the n; rows of X and let
Y,,....Y,, be the n, rows of Y. Define the sample covariance matrices S; = (5;1)pxp

and S, = (8;2)pxp as
n
Si=(m-1"Y (X -X) (X -X)",
i=1

Si=(m-1)" ) (Y -Y) (Y- ¥)",

3

1
n

— — ny
where X = X;, Y = nlz 2. Y;, and sample correlation matrices R; = (p;;1)px, and
i=1

1

R, = (pijZ)po
R, = [diag (S))]7"* S, [diag (S,)]""/* and R, = [diag (S,)]""/* S, [diag (S,)] "

here diag (S;) is a diagonal matrix that consist of diagonal elements of S,. Testing the
equality of two covariance matrices ¥; and X, is an important problem in multivariate
analysis. Under the normal assumption a well-known likelihood ratio test (LRT) statistic

is
T] =-2 log L],

where
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le1Sy + Czsz|N/2

here N; =n;, — 1, N = Ny + N, and ¢; = N;/N, i = 1,2. The LRT statistic is commonly

L 1-1)

enjoyed in low-dimensional setting because the limiting distribution of 77 can be dipicted
by )(lz/zp(p ) (See [1]). However, as the dimension of the data grows dramatically, the
fluctuation of the eigenvalues of the sample covariance matrix be pretty different from
that of population covariance matrix. Thus the size of the test could be pretty high (see
[2]).

Several alternative methods have been introduced to overcome this difficulty. The
first persepective is through random matrix theory. [3] firstly proposed a well-known CLT
for the linear spectral statistic of large dimensional covariance matrix with the Gussian-like
moment condition. Later, [4] removed the Guassian-like moment condition by alternative
assumptions that are easy to verify. Besides, for two-sample covariance matrices test, [5]
deduced a CLT for large dimensional F-matrix under the null hypothesis (X, = ¥,) and
extended this CLT to general F-matrix in [6].

The second persepective is by using extreme value theory. For example, for £ = 1, 2,
we write 07, = "fl—;lﬁijg and define

(631 — (Afijz)z

Mn =. Imax - A ’ (1_2)
1<i<j<p 9,-J-1/n1 + Qijz/nz

where

(1-3)

and

then under null hypothesis and some conditions, [7] proved that M, tends to a Type-I
extreme value distribution when both populations follow elliptical distribution. In our

paper, we proved that the correlation matrix version of M,, also follows the Type-I extreme

0.
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value distribution.

Another interesting problem is the test
H() . P] = Pz, (1-4)

where Py = (r;1),xp and P, = (7;52),x, denote the population correlation matrices of X

and Y, respectively. Similar to (1-1), [8] also considered the following statistic

Ry V2R [N
- — N2’
‘ClRl + C2R2)

L,

and claimed that 7, = —2 log L, was still asymptotically distributed as )(12 2p(ps1)” However,
[9] gave a counterexample to state that 7> does not, in general, have an asymptotic x>
distribution under the null hypothesis (1-4), and the true limiting distribution, which was
found by [10], is in fact a linear form in % p(p — 1) independent X12 variables. The different
limiting distribution between 77 and 7, indicates that the asymptotic properties about
covariance matrix and correlation matrix may vary from each other.

Inspired by this insight and [7]’s work, we consider test (1-4). In fact, a test statistic
that similar to (1-2), but with the sample covariances replaced by sample correlations, has
been introduced in [11] and they claimed that this newly proposed statistic shares the same
asymptotic distribution as M,,. However, as we have discussed before, the inconsistency
might exist between covariance matrix and correlation matrix, hence our first contribution
is to provide a theoretical proof for Cai and Zhang’s assertion. Moreover, many results
about the test for high-dimensional covariance matrix calls for distribution assumption.
For instance, the Gaussian assumption is required in [12] and [13]. In [14] ’s work,
they also propose condition (C3) (see [14]), which restrict the distribution in somewhat
elliptical distribution. Thus our second contribution is to adjust the sparse settings such

that the proof could be given in distribution free case.

1.2 Literature Review

Testing the equality of two correlation matrices is an important problem in multivari-
ate analysis. Many statistical procedures including the classical Fisher’s linear discrimi-
nant analysis rely on the assumption of equal correlation matrices. The test problem has
been well-developed in the low-dimensional case. As we have mentioned, [8] proposed
test statistic 75 for correlation matrices based on the principle of minimum discrimination
information. However, the claimed asymptotic properties in [8] was disproved by [9]

-3-
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through a counterexample, and [10] proved that the asymptotic distribution of 75 is to be a
linear form in % p(p—1) independent y; variables and not in general X;p 1)’ For further
results on this topic the readers could refer to [15], [16] and [17].

With the advent of modern computer science technology, the "small n large p"
problem has arouse more and more interest. But the traditional statistical tools perform
poorly or are not even well defined. One way to understand this point is by looking at
the flunctuation of the density of MP-Law (For more details about MP-Law, see [18]).
For example, if we draw n = 320 i.i.d. random vectors {x;}, each with p = 40 i.i.d
standard Gaussian components. Then from the flunctuation of the eigenvalue of the
sample covariance matrix and the flunctuation of the population covariance matrix (See
[19]) we can see that the sample eigenvalues of S,, range on a wide dispersion from unit
value 1. However, the classical large-sample asymptotic property of covariance matrix
indicates that the sample covariance matrix should be closed to the population covariance
matrix I,. Thus, this contradiction implies that the sample covariance matrix is no longer a
reliable estimator for population counterpart X.. Therefoere, it is natural to understand that
the sample correlation matrix may also have significant biasedness from the population
one and this nature will lead to the failure of classial methods.

Therefore, in the high-dimensional setting, several test statistics for one- or two-

sample correlation matrices test have been proposed. [20] firstly derived
Pr (nW; — 4log p + loglog p < x) — exp [—(87)""/* exp(—0.5x)| — 0,

uniformly for x € R as p/n — y € (0, +o00) under the existence of (30 + €)-th moment
of xﬁf), where W,, = 1 gl_j})ip |7:j¢|. However, the studies of [21] showed that the Type-
I extreme value distribution still have significant biasedness from the true distribution
of nW? — 4log p + loglog p. To fix this biasedness [22] involved the skewness of the
population into the asymptotic distribution. Then, [23] extended [20]’s result in two
directions: (i) the dimenision p of the data could grow exponentially as the sample size n
for the light-tail distribution; (ii) a kind of weak dependency among variables is allowed
for the first time. However, in order to compensate the weaker condition on dependency,
the normal assumption is needed in the latter extension. Later on, inspired by the one-
sample test problem, [14] introduced a self-normalized extreme value statistic M,, for the
two-sample covariance matrices test under some sparse settings and elliptical distribution
assumption. At the same time, [24] showed that a self-normalized version of W,, converges

_4-
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to the Type-I extreme distribution under mild dependence conditions on the sample vector,
and they offered a technique to remove distribution assumptions on the population. As
for the testing of two-sample correlation matrices, [11] has proposed an extreme value
statistic, say 7, and they claimed that 7,, follows the same distribution as M,, without a
theoretical proof. In our work we will provide a strict proof for this conjecture, moreover,
the distribution assumption in earlier ones will be removed by using some techiniques in
[24].

Besides establishing test statistic through supreme norm, [25] and [26] also estab-
lished statistics based on Frobenius norm to carry out test for covariance matrix and
change point detection problem. Then [27] combined the supreme norm and Frobenius
norm to construct new test statistics for one-, two- and three-sample correlation matrices
test. Another newly proposed method by [28] is that they used random matrix theory to
establish a CLT for linear spectral statstic of correlation matrix. Through this CLT, the

statistics in [29] and [30] can be covered natrually.

1.3 Our Work

In this thesis, we provide an mathematical proof for the claim that the self-normalized
extreme value statistic for two-sample correlation matrices test will asymptotically follows
the type-I extreme value distribution. The proof will be divided into three steps. And due
to we do not assume the random variables are independent, the method that used in [20]
will fail in our case. Thus, we follow the idea in [14], which constructs the proof through
Bonferroni’s inequality. By this kind of method, the sparse settings in the correlation
matrix are allowed. Moreover, motivated by [24]’s work, our work will extend the result

to the case without any distribution assumptions under some alternative sparse settings.
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Chapter 2 Asymptotic Distribution of 7,

2.1 Sparse Settings and Moment Conditions

We consider test statistic 7,, that has been proposed in [11] in a distribution free situ-

ation where the mild dependence between variables is also allowed. Let X,...,X,, and

Y,,...,Y,, are two p-dimensional random vector with mean vectors pt; = (t1,. .., Uip)
and pr = (M21,...,H2p) and covariance matrices Xy = (0y1)pxp and Lo = (072) pxps

respectively. Furthermore, the two-sample sizes are assumed to be comparable, that is,

there exist constants C; > C, > 0 such that Cony < n; < Cin,. Let n = max(ny, n,).

To test 1-4, it is unnatural to study the maximum of a collection of random variables

which are on different scales, so [11] consider the normalized verson of | max, |71 — Fij|,
that is,

(Fij1 — fijz)z

T, =: max - — ,
L<i<j<p fij1 /0y + Nijo /12
where
n S = N - \2 -2 2
P 1 Z (Xei = Xi) (X = X)) Fipn | (Xei — Xi) . (Xi; — X;)
Tom k=1 (a-iila-jjl)l/z 2 Tiin Tjj
n = S N -2 —\2 2
= L (U= 0 =5) o =5 0= ) o)
Tom k=1 (a-iiZa-ij)l/z 2 T2 Tjj2
and 7y, = %, ¢ =1, 2. As the normalized part, 7j;;; and 7);, can be seen as estimators
ieCjje
for
i1 = Var [(Xli B ,Uu)(XU - ,UIJ‘) _ Tij1 ((Xli - ,Uli)2 + (le - ,ulj)z ]
! (ino)'? 2 Oii2 0jj2 ’
and
i = Var [(Yli — o)) Y1; — o) _ i ((Yli — pi)? 4 Y1y - ,U2j)2)<
! (0i207j2)' 2 2 Oii Tjj2 ’

Define 7, = {m : 1 < m < ’%} and ¢ = Card(Z,) = p22+p, j we can arrange

the two-dimensional indices {(i,j) : 1 < i < j < p} in any ordering and set them as

{(lma]m) im e In} Let



@(inij —o), if=1,
n

) _
Wkl_] -
_(Ykiij - O'ijz), if £ =2,
and
V(f) — W(f) _ Tijm? (W([) + W(f) ) l = 1 2. (2_2)
Kimjm 2 Kipmim KjmJjm
Define

Ye(n,b) =sup sup  inf |C0V(V1(f>, V(g))| t=1,2,
tel, Ac,,|A|=b SN

Yae = sup |Cov(V}, V), €= 1, 2. (2-3)

s#t
We consider the following sparse settings and moment conditions.
(C1) For any sequence {b, } such that b,, — oo, we have
* v¢(n,b,) =o0(1/logh,), for € =1, 2;
e limsupy,, < 1,for¢ =1, 2.
(Cl*)nFor any sequence {b,} such that b, — oo, we have
* vi(n,b,) =0(1),fort =1,2;
e limsupy,, < 1,for¢ =1,2;
. ZS:, ICov(V\9, V)2 = 0(p*-90), for some 6, > 0, £ = 1, 2.

(C2) Suppose that log p = o(n'/). There exist some constant 7 > 0 and K > 0 such
that

Eexp [n(Xy; — p1i)*/oin ] < K,
Eexp [77(Yli - ,U2i)2/0'ii2] <K,
forl <i<p.
(C2%) Suppose that for some vy, ¢; > 0, p < ¢;n”° and for some € > 0
E|(X;; — 'ull)/o_lll/2|470+4+e <K,
E|(Yi; — pan) [0y |74 < K,

for1 <i <p.

(C3) Suppose that for some 71 > 0, 7, > 0,

. . Nij2
min > 71y and min
1<i<j<p 0Uii107jj1 1<i<j<p Tii20jj2

Condition (C1) and Condition (C1*) imply that both the dependence between x;;, xy,

> T.

_7-



ey JR 956 Tl K A B 2 i 27 8 S
and xy; x;;, and the dependence between y;, y;;, and y;, y1;, are not too strong. Condition
(C2) and Condition (C2*) were considered in [14]. They indicate that for sub-guassian-
type distribution, the growth speed of dimension could be an exponential function to the
size of the sample while only polymonial growth rate is allowed for the distribution with
polynomial tail. Condition (C3) will be satisfied with 7; = 7, = (1 —r)?, if the populations
are normal distributions all the correlations are bounded away from +1, that is, for some

O<r<l1

max |r;j| <r<land max |[rj| <r<1.
1<i<j<p 1<i<j<p

2.2 Main Result

Now we are ready to present the asymptotic distribution of 7,, under the null hy-
pothesis. The following theorem states that 7,, — 4log p + log log p converges to a type-I
extreme value distribution with distribution function F(x) = exp [—\/%7 exp (—%)] :
Theorem 2.1 Suppose that (C1)(or (C1%)), (C2)(or (C2)) and (C3) hold. Then under H,,

forany x € R,

1 X
Pr (T, — 4log p + loglog p < —— (——) . 2-4
1 ( og p +loglogp x)—>eXp[ \/s_neXp > ] (2-4)

By Theorem 2.1, the asymptotic distribution of this two-sample self-normalized
extreme value statistic for correlation matrices test are similar to that of the extreme
value statistic for two-sample covariance matrices test in [7]. Moreover, to get rid of the
elliptical assumption, we use the technique that is imposed by [24], thus an alternative
sparse setting (C1) ((C1%)) is needed.

This outcome extends the result of [14] in two ways: (i) test statistic 7},, the corre-
lation matrices version of M,, is also asymptotically distributed as Type-I extreme value
distribution; (ii) under some alternative spares assumptions, the asymptotic property in
(i) will still hold without any distribution assumptions. The fundemental technique in the
proof of Theorem 2.1 comes from truncation method and multivariates taylor expansion
and the consistency of 7;;; and 7j;;, will also be constructed. The details of the proof can

be found in Chapter 4 of this dissertation.
2.3 Methodology

Before we give the specific details of the proof, the frame of our proof is decribed as

-8-
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follow.
2.3.1 Limiting null distribution of 7,
The idea of the first problem mainly comes from Bernstein’s and Bonferroni’s in-
equalities. The proof is divided into four steps:

Step 1. Firstly we will prove
A P
Nije — MNije, aS N, p —> 0.
This approximation indicates that the 7, in (2-4) can be substituted by 7, =

max (Fiji—Fij2)?
l<i<j<p Mijt/m+mij2/m

version, that is

Further, we can prove 7, can be replaced by the non-centralized

|TH_TH|£)O7 asn’p_>°o’

where

~ ~ 2

_ Viiit — Vi

T, =: max i~ Fie)
1<i<j<p Miji/ny + Nija/na

and 7;j, is obtained by substituting the covariances in 7;;, for non-centralized version
covariances. Therefore, we can prove (2-4) under the assumption that all involved mean
and variance parameters are known and the plugging in estimated mean and variance

parameters does not change the limiting distribution. Therefore, (2-4) is equivalent to
- 1 X

Pr (7, —4logp +loglogp < x) — exp [—— exp (——)] .
( ) = 5

Step 2. Based the sparse assumptions in [14], we will consider a subset of {(,j) : 1 <i <

J < p}, say Zy. Then we prove the following approximation

max (fijl - Fij2)2 ~ max (fijl - fijz)z

P
na. m — 0, asn, p — oo.
I<i<j<p i1 /ny + Mija/ny Gl Qi1 [ny + Ny /o

~ S )2
If we define 77, =: max M then we only need to prove
0 (i.j)e Ty Mit/mitmij2/m

. 1 X
Pr (TI0 —4logp +loglogp < x) — exp [—Eexp (_5)] .

Step 3. We can combine the two samples into one sample and rewrite Tz, as a sum of
independent random variables. Then we apply a truncation step, which will make the
Guassian approximation (see Theorem 1.1 in [31]) applicable. We write the truncated

version of Tz, as Tz, =: max TS Finally, our objective is to verify
(i.))ed
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A 1 x
Pr (TIO —4logp +loglogp < x) — exp [—E exp (—5)] . (2-5)

Step 4. If we assume card(ly) = g and let y, = x + 4log p — loglog p, we apply Bonfer-
roni’s inequality on Pr (TIO > yp) and it follows that for any 0 < s < ¢/2,

i(—l)d‘l Z Pr ﬁElk
d=1

1§l1<---<ldﬁq k=1

< Pr(Tg > yp)

(2-6)

2s—1

s;(—l)d‘l > P

1<hi<--<lg<q

b

d
A
k=1

where E;, = {(1° . > yp}. Finally, we apply Theorem 1.1 in [31] and Lemma 5 in [14]

i Ji

onto the part Pr (ﬂ,‘f:l Elk) and by elementary calculation we obtain

- 1 x\ |
Pr (T[0 —4logp +loglogp < x) — exp [—Eexp (_5) ,

which lead to

~ 1 x|
Pr(T7, —4logp +loglogp < x) — exp [—Eexp (_E) ,

and

- 1 X
Pr (7, —4logp +loglogp < exp|———e (——) .
( gp+loglogp x)—>xp[ = 2]

2.3.2 Remove of the distribution assumption

In previous section, we need to estimate Pr (ﬂgzl Elk) in Step 4. To do this, we

1/2

firstly define x, = 4logp — loglogp + x and 0, = ¢,(logp)”/~, where €, = o(1). By

Theorem 1.1 in [31], we have following normal approximation:

d
(e
k=1

<Pr (|Nd| > x;,/2 — 9,,) +O0(p™), forany M > 0,

Pr (|Nd|min > 12+ 9,,) +0(p™) < Pr

min =
where N; = (Ny,...,N, d)T is a d-dimensional normal variable with zero mean vec-
tor. Thus, the problem becomes to find an estimation for the tail probabilities of a
d-dimensional normal distribution. In earlier work, the following lemma is needed to
carry out the estimation.

Lemma 2.1 Suppose that there exist «1, k; > % such that for any i, j, k, [ € {1,2,...,p},

E(X; — ui)(Xj — pj1)(Xee — e (X — pnn) = ki (O'ij10'k11 + 01011 + O_illo_jkl) ,

-10 -
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and 2-7)
E(Y; = p)(Y; — pjp) (Y = x2)(Y; = ) = k2 (O'ijza'kzz + 02012 + O'ilzo'jkz) .

It can be easily seen that if X and Y have elliptically contoured distributions, then Lemma
2.1 will hold natrually. However, for more general case, wheather this condition is still
satisfied is unknown. This forth moment condition will restrict the range of application
of the result. Therefore, the second goal in our work is to remove this technical condition
and the main idea is motivated by [24]’s work.

In fact, the Lemma 7 of [24] has offered an approprite tail probability estimation for

> Pr (|N dlmin = x,l,/ g Hn) under some mild dependency conditions but without
;fllylfc.l{;tl;ils)?ltion assumptions. Thus, to apply this lemma to our problem, the methodology
will be divided into two parts:

* in [24]’s work, they require each coordinate of N, has unit variance, but in our
case, the variance of the coordinates are not necessary exactly unit but asymptotic unit.
Thus the first step is to prove that the result in Lemma 7 of [24] will still hold for the
normal variable with asymptotic unit variance;

* the sparse settings in their work are also different with our settings. Thus the
second part of our work is to adjust our sparse settings such that the (B1) and (B2)
conditions in [24] are satistified.

The proof of this theorem is different from the techniques that used in [20] or [22].
In their work, they assume that the component in each random vector is independent and
identically distributed, while in our case, the correlation matrix is not assumed to be an
identical matrix and some kind of sparse structure is allowed. Thus, the Stein’s method
cannot be used directly. The proof will be developed similar to the method that was
established in [14]. This kind of different technique can be used to handle on the case that

the random variables with weak correlations.

-11 -
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Chapter 3 Simulation Studies

In this section, we carry out a simulation study to assess the performance of the pro-
posed method. We consider the two-sample correlation matrices test problem, and set the
dimension p to be 50, 100,200, 500, 1000 and the sample size n; = n, = 100, 150,200. The
data were generated according to x; = Ri/ *wy; and yi = R;/ *w,;, where each component
of w;; independently follows Gaussian population N(0, 1) or Gamma—(4,2), for ¢ = 1,2.
For sake of space we selectively present some results in Table 3-1 ~ Table 3-4 and include
the additional results in the appendix pages. Model 1 is designed for check the empirical
size of the test, and Model 2 ~ Model 4 are designed for calculate the empirical size when
we take R; as the correlaion matrices for both x; and y;, and they are designed to claculate
the empirical power when we assume R; is the population correlation matrix of x; and R,
is the population correlation matrix of y;. Four different models of population correlation
matrixces are summarized as follows.

e Model 1: LetR,; =R, = (r'i‘f|)ﬁj=1, where r = 0.25, 0.5, 0.75, 1.0.

e Model 2: Let R, = (0‘5\i—j|)5’,]_:1 and R, = Ry + €(1,1]), where € =
0.25, 0.3, 0.35, 0.4.

* Model 3: Let R = I, and R, = R; + D, where D = (a’,-j)‘;’,j:1 and d;; = €, if
li —j| =1, for e = 0.05, 0.08, 0.10, 0.12.

* Model 4: LetR; = I, and R, = (r'i‘-i‘)ﬁjzl, for r = 0.5, 0.525, 0.55, 0.575.

We set that nominal size to be 0.05, run 1000 replications for empirical size and 1000
replications for empirical power.

It can be seen from Table 3-1 that the empirical sizes of the test are close to 0.05 as
the dimension p and sample size n tend to become larger and larger which reflects the fact
the null limit distribution of 7,, is well approximated by Type-I extreme value distribution.
Moreover, from Table 3-2 ~ 3-4 we can see that the power of the test is pretty high while
p, n get larger. However, when p/n is small, the power of the test will become relatively
small, this fact may indicate that the convergence rate of the approximation is not quick
enough.Thus, we hope to obtain the rate of convergence of the asymptotic behavior so

that we can modify the limiting distribution and get a better approximation.

-12 -
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Table 3-1 Empirical sizes for Model 1 under Normal population

Empirical size of Model 1

0.25

0.5

0.75

1.0

100
150
200
100
150
200
100
150
200
100
150
200

P

50
0.051
0.047

0.04
0.057
0.05
0.04
0.051
0.045
0.029

0.0

0.0

0.0

100
0.058
0.048
0.059

0.06
0.054
0.055
0.061
0.052
0.042

0.0

0.0

0.0

200
0.062
0.061
0.058
0.069
0.063

0.06
0.067
0.056
0.052

0.0

0.0

0.0

500
0.075
0.066
0.066
0.067
0.063
0.064
0.078
0.065
0.053

0.0

0.0

0.0

1000
0.086
0.073
0.074
0.073

0.07
0.073
0.089
0.073
0.071

0.0
0.0
0.0

Table 3-2 Empirical size and empirical power for Model 2 under Normal population

Empirical size of Model 2

Empirical power of Model 2

0.25

0.3

0.35

0.4

100
150
200
100
150
200
100
150
200
100
150
200

50

0.051
0.049
0.045
0.058
0.051
0.038
0.056
0.049
0.041
0.057
0.046
0.041

100

0.064
0.058
0.052
0.073
0.063
0.057
0.062
0.056
0.047
0.069
0.048
0.055

200

0.069
0.068
0.059
0.075
0.073
0.064
0.077
0.067
0.064
0.073
0.062
0.051

500
0.07
0.07
0.06
0.07
0.07
0.07
0.08
0.08

3

7
7
6
7
3
2

0.068

0.09
0.06
0.05

1
1
6

1000
0.083
0.084
0.076
0.089
0.085
0.084
0.093
0.096
0.078
0.101
0.076
0.065

50
0.861
0.989
1.0
0.963
1.0
1.0
0.995
1.0
1.0
0.997
0.997
0.992

100
0.949
0.998
1.0
0.991
1.0
1.0
0.999
1.0
1.0
0.998
1.0
1.0

200
0.986
1.0
1.0
0.998
1.0
1.0
1.0
1.0
1.0
0.999
1.0
1.0

500
0.995
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

1000
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
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Table 3-3 Empirical size and empirical power for Model 3 under Normal population

Empirical size of Model 3

Empirical power of Model 3

ron
100
0.05 150
200
100
0.08 150
200
100
0.10 150
200
100
0.12 150
200

4

50
0.05
0.048
0.036
0.064
0.046
0.05
0.053
0.044
0.046
0.056
0.053
0.049

100

0.052
0.07

0.053
0.074
0.057
0.056
0.067
0.05

0.052
0.077
0.067
0.050

200 500 1000 50
0.066 0.079 0.086 0.6

0.074 0.07 0.089

0.067 0.07 0.074 1.0
0.082 0.086 0.108 0.626
0.071 0.08 0.086 0.98
0.056 0.063 0.077 1.0
0.066 0.081 0.099 0.604
0.063 0.079 0.082 0.986
0.061 0.061 0.074 1.0
0.061 0.084 0.108 0.647

0.067
0.065

1

0.98

0.074 0.093 0.981
0.071 0.077 1.0

100
0.464,
0.964
1.0
0.544
0.965
1.0
0.548
0.957
1.0
0.533
0.973
1.0

200
0.464
0.95
1.0
0.489
0.947
1.0
0.511
0.952
1.0
0.462
0.942
1.0

500 1000
0.392 0.354
0.881 0.831

1.0 1.0

0.41 0.345

0.899 0.8
0.999 1.0

18

0.409 0.363
0.884 0.833
1.0 0.999
0.39 0.389

0.887
1.0 1.0

0.818

Table 3-4 Empirical size and empirical power for Model 4 under Normal population

Empirical size of Model 4

Empirical power of Model 4

100
0.5 150
200
100
0.525 150
200
100
0.55 150
200
100
0.575 150
200

50

0.049
0.052
0.042
0.051
0.045
0.044
0.048
0.041
0.041
0.051
0.044
0.031

100

200

0.053 0.062
0.052 0.062
0.043 0.058
0.053 0.081
0.044 0.055
0.05 0.062
0.064 0.078
0.049 0.049
0.052 0.053
0.066 0.062
0.051 0.063
0.045 0.05

500 1000

0.073 0.077
0.066 0.073
0.056 0.063
0.079 0.091
0.069 0.070
0.055 0.061
0.071 0.092
0.075 0.085
0.065 0.08

0.076 0.098
0.065 0.076
0.071 0.073

50 100 200 500
0.787 0.858 0.796 0.701
10 1.0 10 1.0
1.0 1.0 1.0 1.0
0.937 0912 0.852 0.823
1.0 1.0 1.0 1.0
10 1.0 10 1.0
0.974 0.949 0.917 0.806
1.0 1.0 1.0 1.0
10 1.0 10 1.0
0.985 0.974 0.941 0.882
10 1.0 10 1.0
1.0 1.0 1.0 1.0

1000
0.658
0.999
1.0
0.713
1.0
1.0
0.746
1.0
1.0
0.807
1.0
1.0
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Chapter 4 Lemmas and Proofs

The proof of this theorem is different from the techniques that used in [20] or [22].
In their work, they assume that the component in each random vector is independent and
identically distributed, while in our case, the correlation matrix is not assumed to be an
identical matrix and some kind of sparse structure is allowed. Thus, the Stein’s method
cannot be used directly. The proof will be developed similar to the method that was
established in [14]. This kind of different technique can be used to handle on the case that
the random variables with weak correlations.

The proof is based on an estimation of the tail probability of the multivariate normal
distribution. And we first prove the consistency of the normalized part of 7,, so that the
denominator of 7, can be considered as a constant. This step will simplify the problem

and a theorem in [31] is needed to construct the limiting distribution of 7,,.

4.1 Guassian Approximation
Suppose that N, = (Ny,- - -, N,) is a g-dimensional normal random vector with zero
mean and unit variance. Let X, = (0y;),x4 be the covariance matrix of N,. For any
sequence {b, } such that b,, — oo, define
y(n,b,) = sup sup inf |07,
tel, ACL,,|A|=b, SEA

A
Yn = SUpP |O-ts|'
S#t

Consider the following conditions.

(B1) y(n,b,) = o(1/log b,,) and limsup vy, < 1.

(B2) y(n,b,) = o(1), limsupy, < fand > o« |? = 0(g*°), for some § > 0. Then
the following lemma, taken frgm [24], providessﬁl guassian approximation.
Lemma 4.1 Assume (B1) either (B2). For a fixed x € R and x, satisfying x, = 2logq —
loglog g — log(4n) + x + o(1), then we have

‘ e—dx/2
fim ), Pf(ﬂ{lel>x;/2})=T'

Acl,,|Al=d ieA
4.2 Consistency of 7;;1 and 7; 2

By following two lemmas we can prove that 7,, under the assumption that all involved
-15-
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mean and variance parameters are known and the plugging in estimated mean and variance
parameters does not change the limiting distribution.
Lemma 4.2 Under condition (C2) or (C2*), there exists some constanc C > 0 such that

forany M > O and ¢ > 0,

~ ~ €n — -&
Pr (ma.x|77ij1 ~ | = I ) =0 (P M /8)’ (4-1)
i.j ogp
En _ -
Pr (ma.x g2 = T1ij2| = ) =0 (P Mt ”25/8) ’ (4-2)
i, logp
where
., R 1 2
A= 1 < Xyi X j Fij1 X;fi N Xlgj
1= — —— - | =t =
! np T=1 (5’[[15’_,'_,'1)1/2 2 hO-iil O-jjl |
n = [ y2 vz 1) 2
i = 1 YiiYy Fijp | Yy Lk
i = — — | = — (>
Tom =1 (5'ii25'_i.i2)1/2 2 [Tz 92 |

and &, = 1221 if (C2) holds, &, = - if (C2°) holds.
Lemma 4.3 Under condition (C2) or (C2*), there exists some constanc C > 0 such that

forany M > O and ¢ > 0,

€
P 5o =il Joro = —2— :0( M —8/8)’ 4.3
r(“}ﬂxhﬂ '711|/0' 107j1 logp) p n (4-3)
£
p lij2 — Mij Ty > —— =0( M _‘9/8), 4-4
r(rr}3X|77;2 77,2|/0' 202 logp) p n (4-4)

here ¢, is defined in Lemma 4.2.

4.3 Proof of Theorem 2.1
Without loss of generality, we assume that y; = u, = 0,07, = 0y;; = 1forl <i < p.
Let

. (Pt = Fija)”
T, = max ' ‘
1<i<j<p Niji/ny + Nija/ma

We fristly prove that |Tn - Tn| — 0 in probability. Note that under the event

{|ﬁij1/77ij1 - 1| < Ce,/log p, |fij2/Mij2 = 1| < Cg,/log p} we have
&En

logp’

T, - 1 < f, (4-5)

- 16 -
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By using the taylor expansion

. Oij1 Tij1 Oii1 — 051 LSy (n1?)

L= N2 A~ <~ A2 5 p ’
(G711571) 2 (Gin10751) il i

Ao Jij2 Tij2 Oii2 — Tiin + Ojj2 — Tjj2 +o (n—1/2)

ij2 = T 12 A~ . 1/2 ey A 4 ’
(07120772) 2(0i20752) T2 7jj2

where residue 0, (n/?) is because max |X;| = O,( 10%) (see Cai, Liu, Xia 2013), thus

we can estimate 7,

L AN
n fijl((-r_flﬂ-,“]l) "o fijz((-r.fzh}fz)
n XeiXej R Y YiiYig 2 %
Ly (5'ii15'jj1)1/2 2 ey (5'51'25'1,'2)1/2 2
T, < 2 max
i Niji/m + Nija /2
(4-6)
Y (% %Y
+ C(n; + my) max i, | =— + = | + C(n; + np) max Fil=—+=—
ij Y\ Oyp ij it Ojj1
;! r (Fipn = Fi)”
+ C(ny + ny) max —— + C(ny + ny) max —— + max + 0,(1).
Loy L Oy i Miji/nn + i/ no
Since max |)_(i| = 0,( loi” ), there exist a constant C such that
_ lo
Pr | max |Xl- >y —2L) =0 (p_l + n_‘g/g) .
i n
We consider
|)_(i| log p _ 1._ 3 . ) logp
Pr [ max > C4/——| = Pr|max |X,~| =01+ =+ 0,((Gyis — 1)) 2 C
i 5-_1_/12 n i 2 2 n
_ lo
< Pr|max |X,~| >C gp)
i n
_ lo
+ Pr max|Xl-|max |G — 1] = C4 gp)
i i n
. log p log p
+ Pr [ max |Xl-| op >C = 0,(1).
i n n
Therefore, we have
| X log p
max —- . 4-7
AT NN -
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Hence, we have

_ = \2 _ =5\ 2
e 2 5 2
~2 i2 Xj 1'2 Xf
(ny +ny)maxr, [=—/—+=——| <(n +m) maxr max + —
s l]l ~ ~ ljl ~ ~
L,J Oii1  Ojj1 L\ Oii1 Tjj1

< op(l)n}a]l'xfizjl = 0,(1).

Set
2
f i XI%! kj
1, XlekJ Ui\ 6in Gl
Zki} - - ~ 1/2 7 s 1<k < ni,
1 (O-lllo-jjl)
. [ .
rljZ —- =
Ylek_] Oii2 Tjj2
Zkij:_ — 1/2— 5 s n1+1£k§n1+n2.
(O-liZO-ij)
We can write
2
I%l + X’%J i I%i YIEJ
1 % X X j i\ i 1 % YiiYij 2| i a2
e 72 - 72
m (0'1110'/,1) / 2 " =1 ((71120—//2) / 2
max
L N1/ + Nija /o
np+ny 2
> Zyij
k=1
P 2
J ”2771111/”1 + o1
ni+np
S 72,
k=1 Y
< 2max —
by ”277ij1/1’l1 + nanijo
In the proof of Lemma 4.3 we have obtained for any M > O,
£ _ _
Pr | max Z i~ 27],]1 > C— :O(pM+n‘9/8).
Lj o |m log p
1 & e
Pr|max |— Zklj Nij2| 2 C— =0 (p_M + n_S/S) .
ij |1y £ log p
Therefore, we have
ni+n ny+nyp 2
2 k,J Z kl] nznijl/nl — Malij2
max — — 1| < max |—
ij n2771]1/n1 + mon;jo i.j nzmﬂ/nl + mon;jo

- 18-
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ny
(Z kl_] n%nijl/nl) + (kgl Zlfij - n2nij2)

: 2
bJ nzﬂijl/nl + na1;ijo

nl n2
(nll — li - nlnlﬂ /n2) (,%2 fot Zku 771]2)

= max +
i, nzr},-jl/nl + n_lnijz nzmﬂ/m + Nij2
1 2 2 LS 2
(,l1 z_: kij = myniji/ny) (n_z ka Zkij — 1ij2)
< max — T + max —
i,j nznijl/nl + i i,J n277ij1/n1 + 1ij2

IA

1 ni 1 ny
2 2 2 2
€, max |— Z Zkij —mymiji/ny| + Gy |— Z Zki,- — Nij2
L,j [ p : n = -

= 0,(1).

Here we proved that (4-6) is O,(1).
(fijl—fsz)z

In order to estimate max R
nij1/m+nij2/n2

i,j

we use the following taylor expansion

~ ~ Tij1 (~ 45 o) +0(,., 2+|,., |2+,., 2)
Fij1 :0'1‘]'1—7 Oii1 T 0jj1 — ) P |0'ij1—0'ij1| Oii1 — Oiil |0'jj1—0'jj1| 5
~ ~ Tij2 /. ~ ~ 2~ 2, |~ 2

Fijy = Gijp = —~ (Fin + T2 —2) + 0p(|a',-j2 - 0',-]-2| + |Gz — Tuin|” + |0'jj2 - a'jj2| ),

Thus
(Fipr = Fia)”
max
L.J 771]1/”1"‘771]2/”2
2 2 ~ - 2
O'.. —O'.. O-.. O'.. —O'..
< 2 max (111 112) + ijl max (112 ul) (4-8)

i Niji/m + Nija/no 2 g mi/m+nip/ng
2

2
Tij Tjj2 — Tjj1
" ijl max ( JJ JJ ) +0p(1)’
2 i mip/m+nia/ng

the 0,,(1) here is because max |7, — 07yj1| = Op( k’%). Set
l’]

Wk[j = m (Xk,ij O-ijl) , 1<k< n
Wkij = - (Ykiij - O-ijZ) , n+1< k < n; + no.
Then we can write
max (Fij1 — 5'ij2)2 _ max (Fij1 — 5'1']'2)2 Oij1/ny + 6;j2/ny

Lj Mii/m o+ ipfne i Oi/n+ 0ip/ny mip/ng + mija/no

-19-
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(Gij1 = 5'ij2)2

< Cmax
i Oij1/n +0i2/ny
ni+np
2
Z Wkl]
k=1

< 2C max
i.J l’l2 ljl/n'l +n29112

By the proof of Lemma 3 in Cai, Liu, Xia(2013), we obtain for any M > 0,

£
Pr [ max Z ey 01| > C——| = O(p_M +n_‘9/8)
ij |n i log p
£
Pr (max Z W,fu 0ij2| = C1 “1=0 (p—M + n—s/s)
RO L3 et 08P
| A
Same as previous case, we can prove max P I| = o,(1), and
nl+n2 5
kij
max o = 0,(1). Here we proved the first term in (4.3) can be bounded in

2
ij Mbiji/ni+nabij

the sense of probability, and other terms in (4.3) can be proved similarly. Here we proved

- - 2
that max M
lj 771]1/”1"'771]2/”2

combine with (4-5) and Lemma 4.3, it sufficies to show that for any x € R

can be bounded by a constant in the sense of probability. Thus

1 X
Pr( —4logp +loglogp < x) — exp [——e p(——)
V8r 2
Let
. (Fip = Fip)”
T, = max
1<i<j<p nl]l/nl + T]Uz/l’lz
we consider
A A 2 ~ ~ 2
A ~ Fiji = Vo) — \Fij1 — Fij
|Tn_Tn| < max ( Jjl 12) ( Jjl 12)
i.j Niji/m + Mija/na
< C(ny + np)X
—XiX; Yy, ip (2 ) (XX
N e s N2 P 2 6w Gim) 2 G Gin
(FinTj) (iinT72) " H N Y
+ C(ny + ny)'\PT*x
L o B ) B o1 12) 12
XX, B Wi y? N Y L i X X
e Gom 2 G ) 2 \Gw oy
(Fin &) (FinnT72) N H " 7
+0,(1) (4-9)
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Combine (4-7), (4-9) and (4.3) we can see that in order to prove Theorem 2.1 we only
need to prove
Pr (T, — 4log p + loglog p < x) [1 x]
r (1, —4logp +loglogp < x) — exp ——exp(——) .
V8 2
Note that we can rewrite Tn as
) (Fin = Fipa)”
T,, = max
i M1/ + N/

(Gt = F3p2) + T2 (Gt = Fa2) + (51 = Ty12)) + 0p(n™ )]

= max

i Mij1/n1 + nija/no
[ ni+np oiji ni+np ni+np 1/2 2
2 Wil - Wi + 2 Wijj| +0,(n''7)
— max - k=1 k=1 k=1
o 2
Ly ”2771‘]'1/”1 + nanip
- 2
ni+np
Oij1
Y Wi = =5 (Wi + ijmjm))]
| k=1
meln nz”l]l n nonij2
(n1+n2 2
Z Vkm
k=1
= max — + 0,(1), (4-10)
mel, 511 /My + Mol
where
Jij1
Viem = Weinjm = > (Winsie + Wijin) s 1 < k < 1y +na.
We write
ni+ny
Z Vkm
k=1
Qm = )
2
\/nznml/nl + MoMmo
nitny
Z Vkm
A k=1
Qm = )
2
\/nznml/nl + moMmo
where

Vi = VimI{IVim| < 70} = EViI{|Vim| < 7}

and N1 = Miyjots Mm2 = Miyjn2- Let T, = 77 K log(p + n) if (C2) holds and 7, =
nt J(log p)*/2 if (C2*) holds. Tf (C2) hold, then
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1 ni+np
max Z E [Vim| I{|Vim| = 7}
mel, 2

\/nznml/nl + MMy k=1

< C\/ﬁ max max E |Vkm| eXP(Uka|/K1)/CXP(77Tn/K1)

mel, 1<k<n;+ny

< C/n, 4-11)

and if (C2*) holds, we have

1 ni+ny
max Z E [Vim!| I{|Vim| = Ta}
mel, 2

\/nzﬂml/nl + MMy k=1

< Cynmax max E|V,|*2¥e?glvorte
mel, 1<k<n;+ny

< C/n?. (4-12)

Combine (4-11) and (4-12) we have

Pr max 0, - 0n] > oz )"
mel,
ni+n

2
Z |Vkml{|vkm| = Tn} - EVka{lvkm| 2 Tn}|
k=1
< Pr| max
mel,

> (logp)™

\/”%Uml/nl + o1 m2

mel, 1<k<n;+n;

ni ni+np
< ZPr (max [Viem| = Tn) + Z Pr (max [Viem| = Tn)
mel,
k=1

mel,
k:n1+1

<Pr (max max |Vl > Tn)

< nPr (max

mel,

Tijml
Xein X — —2 (X,fim + X,fjm)‘ > 7T, /Kl)

+ n,Pr | max
mel,

O-im .an
Vi Yejon = T] (Ykzim + Ykzjm)‘ 2 Tn/Kl)

<n [Pr (max X,fim > Tn/Z) + Pr (max Ykzim > Tn/2)]

mel, mel,

< npmax [Pr (X} > 7,/2) + Pr (Y7 > 7,,/2)]| = o(1)

mel,

Note that

max Q% — max Q7
mel, mel,

A 2 A
<3max |0, — Q| +2max |Q,,| max |0, — Ol
mel, mel, mel,
hence we only need to prove that for any x € R we have

A 1
Pr (Eea])j Q2 —4logp +loglogp < x) — exp [_\/ﬁ exp (—%)] . (4-13)

22



A N e i T R S A7
According to Bonferroni inequality and let ¢ = Card(Z,), then for any integer 0 <

s < q/2, we have

d

Az,

J=1

2s
;(_1)d_1 Z Pr

1<mi<---<mg<q

<Pr (maxQ > yp)

mel,

2s5—1 d
<D Pl ) Ew ) (4-14)
d=1 1<my<---<mg<q Jj=1
where E,,, = {sz > y,}. Let
Vkm = Vkm/(nZUml/nl + an)l/za form € In
and My = (Vi Vimas - - > Vimy)» 1 < k < ny + na. Thus, we can see
d ni+np
Pr(() En, Pr(n21/2 DMy > y}/z). (4-15)
Jj=1 k=1 min
By Theorem 1 in Zaitsev, A. Yu (1987) we have
ni+np
Pr(nzl/2 Z M, > yl/z) < PI'(|Nd|mm 2 1/2 — €q(logp)~ 1/2)
k=1 min
n'’?e
+cdPexp |- “ ,
1 p( C2d3Tn(10gp)l/2)
here ¢, and ¢, are two positive constant, N; = (Ny,---,Ny) is a d-dimensional normal

vector with zero mean and Cov(Ny) = Z—;COV(M 1) + Cov(M,,,+1). And

(log p)¥2n™ 10, if (C2) holds,

€, = 1
(log )1/2, if (C2%) holds,
Thus, €, tends to 0 and we can see
1/2¢
d? - n_ =0(p™),
Qe e ( erdrGogpyi) - P )

for any M > 0O and fixed s. Similarly, we have

ni+np
Pr(n;l/2 Z M; > y,l,/z) > Pr(|Nd|mm > yp >+ €,(logp)” ]/2)
k=1 min
n'2e
—cd®?exp |- “ .
: p( CzdSTn(IOgP)I/Z)

Thus, it follows that
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> Pr(Naly 2 92 +eullogp) ) +0™) < Y Pr

d
Ae
1<mi<---<mg<q l<m<---<mg<q Jj=1

< 20 Pr(Nal = 3% - llogp) ) + 0. (4-16)

1<mj<---<mg<q

For0 <t,s <d,let

1 1
C():

n n
n_?ntl + N \/,,—Tﬂsl + M52

We define F,,,; = {N,,; = y,l,/ - €,(log p)~'/?} By elementary calculation, we can see that
when (C2) holds

Cov(N,, Ny) — (%COCOV(Vlt,Vls) + COCOV(Vn1+1,taVn1+1,s)) <crl. 4-17)
2

n

If (C2*) holds, we have

< Cr, 20t/ (4-18)

Cov(N,, Ny) — (%COCOV(VU’ Vis) + COCOV(Vn1+1,t’Vn1+1,s))
2

Because of condition (C1) ((C1¥)) and (4-17), (4-18) we can see that for each fixed d,
Cov(N,) satisfies (B1) either (B2). Thus, by Lemma 4.1 we have

—dx/2+d log =— W
lim Z Pr ﬂ Fo, | = —,. (4-19)
n_molSm1<~~~<md<q ’
Take (4-19) into (4-16) we obtain

d —dx/2+dlog —=

e V8rr
> ([ En|= — (4-20)

1<mj<---<mg<q j=1

Then combine (4-20) with (4-14) we got

Pr (max Q2 —4logp +loglogp < x) — exp

mel,

L (_f)]
Vir PAT2)|
4.4 Proof of Lemma 4.2

We only prove (4-1) and (4-2) can be proved similarly. We fisrt prove the lemma
under assumption (C2). Without loss of generaliy we assume that EX = O and Var (X;) = 1
forl1 <i<p.

Write

— — nj —
LY (=% (X -%) o (P)E (%)’

ny

Nij1 = e (1+L1)+ -

-4 -
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4 k=1
o2,
Jil
[ ni -3 _ np _ _ .3
. =2 (X = X)) (X = X)X (X - X)) (X, - X))
_ ( ijl ) k=1 n k=1
5’1‘1‘15)‘1‘1 Jiil Jjj1
B2\ B2C; BC;
LA+ —|+ +—2L -D(E +Ej). (4-21)
2 4 4
Based on the first order Taylor expansion of 3-variable and 2-variable function yiz, %

andgforx eR,and y,z >0

2 2 2
X X, 2x0(x — X X, — 77—z
_ N, 2 o) % (y 2 4 °)+o<x—xo>+o<y—yo>+o<z—zO>,
(yz)  Yozo Yo<o YoZo Yo 20
X X X — X X - 77—z
=0y (y 20 4 °)+o(x—xo>+o<y—yo>+o<z—zO>,
(yz)  (voz0)  (oz0)  (Yozo) Yo 20
X X0 X — Xo X0
—:—+———2(y—y0),

y Yo Yo Yo
A could be approximated by

ny
1 2 y2
ni kgl inij

A= ——
J5i107jj1
1 & (—2X2 XX, 2XaXP Xe  X2X?
kikj ] kj ki“*j
+ — — + — + —
i Uii107j1 0ii107jj1 Uii107jj1
n 2 2 oo 22
1 XX AXuXg XX, 33X X;
+ — — + — - —
D \Giindjiji 0ii107jj1 0ii107jj1
1 & X2X2 X2 X2X?2 X2
i ““ki“Tkj JTkj ki -1/2
+ — — + — +o0,(n"""7)
nao \ diindjiji 0ii107jj1
A
Z A+ A"

where

nj

ny
L8,
A" _ k=1

b

0ii107jj1

and A" equals to the rest of A. B could be approximated by

-25-



Iy JREE Y R 2 B 2 2 A7 1 S

~2 n S < n n
B O-ijl + 1 ! —2inijXiX Zl Zl XklleIJszlesz
Oiin0jj1 - M4 Jii107jj1 lkl 1 kool 0'“1
1 Xiu)gﬂjxizrxkﬂ)( _1
LS BB R o)
n k=1 ky=1 0-”10-”1
£ B + B,
where
~2
~ Tiji
B = =z =<
0ii107j1
and B” equals to the rest of B. C; and C; could be approximated by
| vy
. in ni ni X2 X X4 4 w4
C = nlk; _ l _3 ki + inXi
) n n Z Foa ot
iil L3 L= il iil
n 3 v 2 2 73 o4
1 -4X.Xi  6X X7  4XyX; X; s
+n_ — —— - ———t | top(n)
193 Tl Tii Tiil Uil
£C+C, (4-22)
and
1 4
-~ 2 X n n 2 v 2vy4 4 4
C. - mg Tk Z 2 Z X Xi Xy N XX
;T 5’2 n np 5’4 5'4
Jil k=1 k=1 Jjl Jil
mo(-4X3 X 6X2.X? 44X X? X*
1 kj v ki kil J 12
+n—z — t—— =t 5| to®)
=R T i i
A A *
=G+ G,
where
1 ni
w X
Ci = —
<2
O-lll
pn L3 X
~ k=1
Cj - a— 5 5
O-jjl

and C7, C; are the rest of C; and C; respectively. D could be approximated by

~ S n o Y2
Jij1 Xin 1 I inijXl.z ijijX' _1
D = - + — + +o0,(n")
Findi T n G2 Fii1 02, i
iilVjj1 i1V jjl 1 k=1 ii1Y il iil jil
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2
o>
+

<

where

~ 5',-J-1
D=———
J4i107jj1

and D~ is the rest of D. E; and E; could be approximated by

nj
1 3X, .
n 2 inXkJ

I 1 < (XX, X?
k=1 kj
Ei=———+— Z %
il L0 Wy Uil
+ 1 i Xl?in 3Xl§i 1ej Xi +3X1§iXin
L Wy Tiil 0ii1 Tiil
. 1 i(3xkixkj)2,- 3Xu XX, +X§ij ngj)
ny £ i1 il i1 Tii1
+0,(1)
£ E +E;,
where
19 3
. n_lkz_:1 inij
E = —— ,
Jiil
I v v3
) Z X];]Xkl
~ k=1
E] = ~ ,
gjj1

and E}, E; equals to the rest of E; and E; respectively. Thus, we can write

i i 1AB* A (1 1B 1B*A* CB +C/B CiB" +CjB
i1 = Tij1 + ~AB* + +=B|+= + +
Mij1 Nij1 2 2 2 4 4
-D(E; +E)) - D (E+ ) - D (B} + Ef). (4-23)

By taking the taylor expansion
1

Tii1Tjj

= 1= (G = 1) = (G551 = 1) + 0p(n”'?)

and combine with the fact that max |5, — 0;;1| = O, (+/log p/n) we can see that in order
L.J

to prove

log p
n

n 2 vV
in kj Xj >

=0 (p™),

1
Pr (max -
l’.’ n

o Ziil0jj1
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we only need to prove the result

log p

)_(j > Cs
n

=0 (p™),

1
Pr (ma_x -
iJ

n
2
n Z Xii X
k=1

which has been proved in the supplementary material of [32]. Other terms in (4-23) can

be proved similarily. Here we complete the proof.

4.5 Proof of Lemma 4.3
Write

771]1 nij1 = _Z

m| X X,
+ 1 3 oaE (XX)) (X7 + X7 = iy ——H

XlekJ

O-lllo-jll

B (X:X;)’

2 2
3(1“' " f(kj
0ii1 Ojj1

1/2
o | (G:1571)
[ 2
2 2 2
15| T [ X5 X Tij 2
r— § " ) - (x4 XF)
np e 4 O-iil Jjj1 4

We first assume that (C2) holds. It suffices to show that

1 X X
Pr | max | — | ) g (X:X,)’|| = Clogp/m | = 0(p™),  (4-24)
Lj N =1 O-nlo-]]l
1< [ XXy XX
PI'(II}EJI'X n—z O-ile (Xi3Xj+XiX/3) —TIij1 3212 1232 >C logp/nl
R R i1 Tjj1 i1 T
=0(p™), (4-25)
1o |72 (x2 X] o 2
Pr| max |— Z LAY b1 - Yg (Xl2 + X-z) > Cylogp/n; | = 0(p™).
iL.j |m — 4 Jii O-jjl 4 I

(4-26)

Combine the following taylor expansions

Oij1 ~ - - 12
——— = 0ij1 + (Fij1 — 1) — 03j1(Finn — 1) — 0;1(Fj;1 — 1) + 0p(n” /%),
0ii107j1

1 . . _
———=1-(0s1 = 1) = (Fj;1 = 1) + 0,(n 1/2),
0ii107jj1

1 . _
— =1- (i1 — 1)+ 0p(n 1/2),
Tiil
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lo

£P), we only need to prove the following

n

with the fact that max |5y — 0yj1| = Op(
L]

results
1 <
Pr (ma_x — 3 (X)) - E(X:x,)%)| 2 € logp/nl) —op™), 42D
A L e
LN o B (X)) (X2 4 X2) = oo KXo, (X2 + X2
Pr | max Z o1 B (X:X;) (X2 + X2) - 0ipn XXy (X2 + X2, ) || = Clog p/n,
A L e
=0(p™), (4-28)
1< O-izjl 2 2 \? 0-5'1 2 2)? -M
Pr max Vl_lkZ::‘ e (in +ij) - TE (Xi +Xj) > Cylogp/ni | =0(p™).
(4-29)
Define
ij = ijl {|Xk,| < T\/log(p + nl)} s ij = ij - ij
where 7 is sufficient large. Firstly, we consider (4-24). We have
2

< ¢ (Exi 1 {|xy] 2 oz + m})

1/2
<C(n+ p)_T2'7/2 (EX,jj exp (2_177X,fj))

R 2
E (Xe:Xi,)’ - E (Xkl-xkj)

<C(n+p)y™n"

Thus it follows that

1 <
Pr max (— Z [(Xkl-ij)z —E (Xin)Z] >C logp/m
A L e
1 < A )2 A \2 1
< Pr | max —Z [(Xk,-ij) -E (inij) > —C+/logp/n
A LS e 2

+ i p max Pr (|X,~| > 1+/log(p + nl)) . (4-30)

Note that
n, pPr (|X11| > t+/log(p + n)) < nip(ny +p)_72’7Eexp (77X121) =0 (p_M) ) (4-31)

. N2 2
Lett =17 (8‘[’4)_1 Vlogp/nyand Z;,; = (Xk,-ij) -E (X,-Xj) . Then we have the following

estimation
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ni
Z Etzzlfij exp (f |Zkij|)

k=1

1/2
<logp {E [,72(87-4)—22 (|inf(kj|4 +E |inf(k\,~|4)]2} X

1/2

1 5\ o o \?
Eexp |27(87%) Ofp ((inij) +E(inij) )
1

i . 3 1/2
< logP{E [’74(374) '8 (|inka| +E XX )” 8
1/2

1 2 2
Eexp [2n(87%)™ %((inxkj) +E(inij) )
1

/
<logp {E [’74(874)_48 (|inij|8 +E |Xk"X’<f|8)”l R

1/2

1
Eexp |27(87) " [—2L 22 1og (p + ny) ((in)2 +E (Xk,-)2) (4-32)
nj
Thus, by (4-32) and (C2) we can see that
ny
> ERZ exp (t |Zki,-|) < C,,logp, (4-33)
k=1

where C, ,, is positive a constant only relate to 7 and 1. Then we have

2
nj (inij)
Pr| max — _

iLj N ) 5'1','15'_/'_,'1

5 \2 1
—-E (inij) 2 EC\/Ing/Vl

< exp(—Ct+/n; log p) 1_[ Eexp (tZk,-j)
k=1
ni

< exp(—Ct+/n; log p) 1_[ (1 + Etzz,fij exp (t |Zkij|))
k=1

< exp

ny
—Ct/ny logp + Z EtZZ,fl.j exp (t |Zkij|))
k=1

< exp (—Cn (87’4)_1 logp + ¢, , log p)

<Cp™.,

Similarily, we can show that
1 & N X \2
Pr {max — ' [(inxkj) _E (Xkl-xkj)
AL

-30-
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Thus, (4-24) is proved. As for (4-25), we define the following notation

H{|X:| < tylog(p +ni)} = an
{1X:| > ty/log(p + n)} £ Ix,,

and we use the same technique as above. We consider

O-IJIEXIXJ (Xlz =+ X]z) — O'IJ]EXIX] (}(l2 + X]Z) fxll/\xl)

max
i,J
= max ‘O'ileXin (Xlz + XJZ) (1 - iX[IAXj)‘
2Y)

o BX.X; (Xi2 + X}) (vai + in)’

< max
i,j

(4-34)

1/2 . . 1/2
Tiji (EX?X_/2 (X7 + X )2) (E (IXi + IXJ-))

< 2max
LJ
< C(p+n) "2

Thus, it follows that

1< V
Pr (max — Z [O-ile (XLX]) (X12 + XJ2) - O-ijIinij (Xlgl + X’?]):l > C logp/n])
R L R
ni A n 10
<Pr (max > [B(ix) (X2 + X2) = Xy (X2 + X3 ) || o P B, = 25 gp)
I

PN 1
+n,Pr (max o X3 (X2 + X2) (1 = Iy By,)| 2 5CVlog p/my = C(ni + P)_"TZ/Z)
L]

\ny logp)

2

ni
> [E (X,X;) (X,.2 + Xf) - XuiXy; (X;f,» + ij)]
k=1

+ n;Pr (max |X,;| > Tylog(p + nl))
J

O-ijllX,-IXj >
129

<Pr (ma_x

<Pr (H}a}x Z |E (X)) (X2 + %) = XX (X2 + X2, ) || o B By, = Y ;ogp)
’ k=1
Let
t=n (87’4)_1 Vlogp/m
and

Ziij = o3/ E (X, X;) (Xi2 + XJZ) IxIx; — 011 X Xi, (Xzfi t lef) I Ix, .
Then we consider

Etzzlfij exp (l |Zkij|)

231 -
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<logp {E [ (87)7) 22, ]2}

x {Eexp [2n(87%)™" ng (27t log*(p + ny))
\

2 2
< log p {ZE [(772 (87%) ) (amEX2X2 (Xl? n X}) + 02 X2XY, (X,fi + X,fj) )] }

1/2

x {Eexp [2n(87%)™" ng (27*log*(p + ny)) (4-35)
\

Thus, by (4-35) and condition (C2) we can deduced that

1/2

1/2

ni
D ECZ exp (1]2i4]) < €y logp. (4-36)
k=1
Then we have

Pr (max — Z Zkl] > C\/logp/nl)

L,j N
< exp(—=Ct+/n; log p) n Eexp (tZkij)
k=1
< exp(—Ct+/ny log p) n [1 + Etzz,fl.j exp (t |Zk,-j|)]
k=1
nj
—Cty/ny logp + Z Etzz,fl.j exp (t |Zkij|)

k=1

< exp (—Cn (87'4)_1 logp + .y logp)

< exp

<Ccp™,

Similarily, we can prove that

Pr
L,j Nnp

1
maX—ZZk,J < _EC logp/nl)

<Cp™

As for (4-26) We consider

0'211 0'12]1 2
—E(X2+x; ) I Iy, - =1 (X7 + X7)

max
4

i,j

0-51 2 2\ y
< max—E (X7 + X7)

i,j

i
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o? bz i
<maxT[E (X2+X2)] (Bl

L.J

<C(p+n)".

Then, we can see

1 oo, o2, 2
P — 3| (g + X2) —LE(X.%X?) > Cyl
r nll:jlx n ; 4 ki kj 4 i J ng/nl
1 & |0y 2 o]y 2| 1
< Pr n}e}x n_IZ 7 (X,fi+X,fj) - E(Xf+XJ2) Ix,Ix;| = EC\/Ing/nl
) k=1

20'.2. A 1
+ n,Pr (max (X,fi + X,fj) % (1 - Ixilxj) > ECvlogp/nl -C(p+ nl)—mz/z
l’.l

+ n,Pr (max |X1;] > 7vlog(p + nl))
J

1 & |o? 2 o?
= Pr | max —Z /] (X,fi +X,fj) - 2E (X Xz) Ix, IX > Cxllogp/nl
L.J n] =1 4 4
+0(p™).

Let

=7 (874)_1 Vlog p/m

and

IxIx,.

2 O-iz;'l 2 2 2 O-i.zil 2 2

Then we consider

ni
DB exp (]2

k=1
2 2 0-14 4 O'l4 4
1 [ L (x4 X3 )+ =LB (X + x7)

() 16

2 /1
X exp 8_7774 Ofpdélrd' log(p + ny)
1

1/2
<1 8'74 ‘8“ X2 + X? ’ E(X?+ X? ’
< logp (8 e 162 T A T i T4

1/2
/1 gp
X EZ n jllOg (p+l’l1)
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1/2
<1 g8 % +x2) +E(x2 s x2) /
<logp (84" 162 ( kit kj) + ( i T j)
12

I
x Eg 2L 52 logk(p +m) 4-37)
n

Therefore, based (4-37) and (C2), there exists a constant C, ,, that only depend on 7 and

n such that

ny
Z Etzz,fij exp (r |Zkij|) <G, logp.

k=1
Thus, we have
| o 0'5-1 ) 2 0'1-2,-1 Y1 1 1
pr(— —(X.+X.)— E(X.+X‘) Iy, > =C
r o kzz; 1 i k) 1 ; ] xilx; 2 5 ogp/n
ﬂ
< exp(—Cty/n logp) | | Eexp (tZkij)
k=1
ﬂ
< exp(—Ct+/n; log p) [1 + EIZZ,fl.j exp (t |Zkl-j|)]
k=1
ﬂ
< exp(—Ct+/n; log p) [1 + Etzz,fl.j exp (t |Zkl-j|)]
k=1

< exp [—Cn (874)_1 logp + ¢y logp]
<Cp™.

Similarly, we can use the same method to prove

1 & 0'1.2. 2 0'1.2. 2
Pr(—Z[ . (szl.+X,fj) -—E (Xl.2+xj2)

n
)

<Cp™.,

P 1
Ix,Ix, < _EC log p/ny

Here we complete the proor of (4-26).
It remains to prove (4-27) - (4-29) by replacing O(p~™) with O(p™ + n=¢/%) under

(C2%). Define
Yo = (XuiXes) s By = Yud {|¥iia] < n/(ogp)®}.
Then we have
[EY, i — EXiju| = EXGXGHXE XL > n/(log p)')
)y0+l+s/4

< og B (3

< Cn™,
_34 -
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Thus, it follows that

S ney,
Pr | max E Yiik —EYii i) >
( i £t ( j.k .]’k) logp)
o 5 A ne n
< Pr | max E (Yi' —EY;; ) > 271 ) 4 Pr{max |V 4| > ——

< Cp*exp [—C(log p)4] +Cn®/8

where the last inequality follows from Bernstein’s inequality and (C2*). Here we proved

that
1 < 0
Prmax |— 3 | (XuXey) = E (XX)|| 2 | = 0™ +0%). (438
ij |y ' ' log p
We can similarily prove
I < €
p — 3 |ownB (%) (X7 + XF) = i Xe Xy (XE+ X3, ) || 2 =2
I n}i‘.X nl; Tij1 ( J) i . Oij18ki Akj | Ay kj log p
=0(p™ + n*¥), (4-39)
and
n 2 2 £
p — Ll(xz.+x2) - ‘”E(X2+X2) > 2| 2 o(pM 4+ nel),
[l 55| % ) el | ) <o e
(4-40)
by letting
Yk = o Xea Xy (X, + XF,)
and
O-izjl 2 2\
Yk = — E(Xi +Xj) .

Here we complete the proof of this Lemma.
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Conclusions

1. Main Results

In this article, we discuss the test of the two-sample high-dimensional correlation
matrices. We talk about the drawbacks of the classic methods and explain why the
traditional likelihood ratio test statistic will fail in the case of high-dimesional data. Then,
we list some alternative methods to handle on high-dimensional covariance matrices,
which are mainly divided into the perspective of random matrix theory and the perspective
of establishing some new statistics. Cai, Liu, Xia (2013) proposed an extreme value
statistic M,, for the two-sample high-dimensional covariance matrices test, and proved
that the limit distribution of M,, is the Type-I extreme value distribution, while Cai, Zhang
(2016 ) similarly proposed an extreme value statistic 7,, for two-sample high-dimensional
correlation matrices test. However, they did not give a theoretical proof for the asymptotic
behavior of 7,,. In this paper, we strictly prove that the limit distribution of 7,, is also a
Type-I extreme value distribution, meanwhile, our proof does not require any distribution
assumption.

2. Innovations

Due to the intrinsic differences that exist between the covariance matrix and cor-
relation matrix, the asymptotic behavior of the statistic that based on covariance matrix
may differ from the asymptotic behavior of statistic that based on correlation matrix.
Therefore, it is necessary to verify whether the limit distribution of the extreme value
distribution of the correlation matrix case is consistent with the extreme value distribution
of the covariance matrix case. Our work has strictly verified that the limit distributions
for the two cases are indeed consistent. Further, Cai and Zhang’s assertion is based on the
population with a kind of ellptical distribution property, but our proof does not require
this assumption, so this conclusion is extended to the case of no distribution assumption.

3. Prospect

This paper proves that the limit distribution of the extreme value distribution in
correlation matrix case is the Type-I extreme value distribution, and the following natural
problem is about the convergence rate. In fact, by Stein’s Method, we can consider the
Berry-Esseen bound of the asymptotic behavior, and through the bound, we are able to

adjust our limiting distribution which could help us to obtain a better approximation.
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Appendix A Simulation for Gamma Distribution Case

Here is the simulation results for the case of Gamma distribution. We con-
sider the two-sample correlation matrices test problem, and set the dimension p to be
p = 50,100,200,500, 1000 and the sample size n; = n, = 100, 150,200. The data were
generated according to x; = Ri/ Zwli and y; = Ré/ 2W2,~, where each component of wy;
independently follows Gamma—(4,2), for £ = 1,2. Again we summerize the different
models below.

e Model 1: LetR; =R, = (r“‘ﬂ)ﬁj:l, where r = 0.25, 0.5, 0.75, 1.0.

e Model 2: Let R, = (().5“"j|)1;”j:1 and R, = R; + €(1,17), where € =
0.25, 0.3, 0.35, 0.4.

e Model 3: Let R = I, and R, = R; + D, where D = (ci,»j)‘l’.”].z1 and d;; = e, if
li —j| =1, for r =0.05, 0.08, 0.10, 0.12.

* Model 4: LetR; =1, and R; = (r""f‘)f,j:l, forr = 0.5, 0.525, 0.55, 0.575.
Table A-1 shows the statistical size under Model 1 and Table A-2 ~ A-4 shows the sizes

and powers under Model 2 ~ Model 4, respectively.

Table A-1 Empirical sizes for Model 1 under Gamma — (4,2) population

Empirical size of Model 1

r n p 50 100 200 500 1000
100 0.041 0.051 0.077 0.087 0.09
025 150 0.047 0.062 0.062 0.076 0.083
200 0.047 0.050 0.051 0.064 0.080
100 0.059 0.067 0.071 0.079 0.096
0.5 150 0.05 0.046 0.053 0.071 0.072
200 0.05 0.052 0.06 0.054 0.063
100 0.067 0.067 0.077 0.08 0.108
0.75 150 0.05 0.051 0.053 0.065 0.081
200 0.031 0.04 0.042 0.043 0.069
100 0.0 0.0 0.0 0.0 0.0
1.0 150 0.0 0.001 0.0 0.0 0.0

200 0.0 0.0 0.0 0.0 0.0
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Table A-2 Empirical size and empirical power for Model 2 under Gamma — (4,2) population

Empirical size of Model 2

Empirical power of Model 2

€ n
100
0.25 150
200
100
0.3 150
200
100
0.35 150
200
100
0.4 150
200

p

50 100

0.043 0.055
0.054 0.068
0.042 0.043
0.052 0.058
0.042 0.068
0.041 0.047
0.054 0.052
0.047 0.05

0.042 0.047
0.049 0.058
0.041 0.055
0.037 0.055

200 500

0.059 0.063
0.049 0.076
0.059 0.078
0.065 0.077
0.073 0.076
0.061 0.063
0.084 0.093
0.061 0.072
0.054 0.059
0.078 0.083
0.063 0.063
0.051 0.063

1000
0.078
0.084
0.075
0.078
0.085
0.071
0.113
0.09
0.071
0.107
0.088
0.074

50 100 200
0.934 0995 1.0
0.992 0.998 1.0
1.0 1.0 1.0
0.984 0.993 0.998
1.0 1.0 1.0
1.0 1.0 1.0
0.998 0.999 1.0
1.0 1.0 1.0
1.0 1.0 1.0
0.997 0.998 0.999
0.998 1.0 1.0
1.0 1.0 1.0

500
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

1000
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

Table A-3 Empirical size and empirical power for Model 3 under Gamma — (4,2) population

Empirical size of Model 3

Empirical power of Model 3

€ n
100
0.05 150
200
100
0.08 150
200
100
0.10 150
200
100
0.12 150
200

4

50 100

0.056 0.061
0.044 0.052
0.031 0.065
0.065 0.074
0.058 0.042
0.04 0.048
0.054 0.052
0.057 0.05

0.052 0.057
0.062 0.06

0.048 0.056
0.05 0.058

200 500

0.59 0.073
0.059 0.066
0.059 0.088
0.075 0.097
0.051 0.075
0.041 0.063
0.074 0.073
0.061 0.072
0.054 0.069
0.077 0.093
0.073 0.073
0.057 0.063

1000
0.09
0.074
0.075
0.113
0.079
0.072
0.083
0.09
0.071
0.0107
0.098
0.074

50
0.723
0.977
1.0
0.718
0.981
1.0
0.998
1.0
1.0
0.699
0.978
1.0

100
0.719
0.978
1.0
0.724
0.975
1.0
0.999
1.0
1.0
0.721
0.975
1.0

200
0.701
0.996
1.0
0.708
0.983
1.0
1.0
1.0
1.0
0.742
0.968
1.0

500
0.681
1.0
1.0
0.698
0.969
0.996
1.0
1.0
1.0
0.772
0.961
1.0

1000
0.631
1.0
1.0
0.673
0.963
0.998
1.0
1.0
1.0
0.781
0.958
1.0
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Table A-4 Empirical size and empirical power for Model 4 under Gamma — (4,2) population

Empirical size of Model 4

Empirical power of Model 4

0.5

0.525

0.55

0.575

100
150
200
100
150
200
100
150
200
100
150
200

50
0.052
0.046
0.05
0.052
0.038
0.046
0.066
0.047
0.043
0.068
0.046
0.057

100

0.065
0.061
0.05

0.068
0.045
0.052
0.071
0.059
0.073
0.061
0.087
0.063

200

0.065
0.072
0.059
0.079
0.056
0.068
0.066
0.063
0.054
0.08

0.063
0.069

500

0.073
0.066
0.068
0.077
0.07

0.063
0.083
0.082
0.059
0.093
0.053
0.063

1000
0.081
0.081
0.085
0.088
0.085
0.071
0.093
0.105
0.071
0.107
0.088
0.074

50
0.949
1.0
1.0
0.969
1.0
1.0
0.983
0.993
1.0
0.994
0.998
1.0

100 200 500 1000
0.972 0.983 0.989 0.995
1.0 1.0 1.0 1.0
1.0 1.0 10 1.0
0.97130.981 0.981 0.995
1.0 10 10 1.0
1.0 1.0 1.0 1.0
0.983 0.986 0.993 0.995
0998 1.0 1.0 1.0
1.0 1.0 1.0 1.0
10 1.0 10 1.0
1.0 1.0 1.0 1.0
1.0 10 10 1.0
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