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Abstract

Finding a desirable generalisation of rank-based statistical methods to multivariate case has been
a timeless statistical endeavor. While various concepts of multivariate rank/quantile have been
proposed in the past decades, most of them do not maintain crucial properties enjoyed by the tra-
ditional univariate rank/quantile, such as distribution-freeness and strong consistency. A novel
multivariate rank/quantile from the perspective of optimal transport (OT) was proposed by Cher-
nozhukov et al. [Che+17] and Hallin et al. [Hal+21]. This OT-based concept extends most of de-
sirable properties of traditional rank/quanilte on real line to multidimensional space, thus has
drawn an increasing attention in recent years.

In this essay, we apply the OT-based multivariate rank/quantile on two statistical domains:
multiple-output quantile regression and nonparametric independence testing between random
vectors. On the first direction, we introduce a robust estimation of multiple-output linear model
coefficient by extending the traditional univariate composite quantile regression to the case of
multivariate response variable through OT-based techniques. Both the consistency and the con-
vergence rate of the proposed estimator is established under multivariate heavy-tailed random
error case. For the second direction, we proposed an geometrically intuitive correlation coef-
ficient for random vectors utilising the OT-based multivariate rank. The proposed coefficient
enjoys an entirely distribution-free asymptotic theory under the independent assumption, thus
avoiding any permutation-based p-value calculations. Moreover, unlike many existing measure-
ment, the proposed coefficient is capable of detecting not only functional dependency but also
spurious correlation via confounders.
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Especially, I thank Zoltán Zsábo, for his selfless dedication to our discussions on various topics,
even sometimes at the cost of his dinner.

No words can express my gratitude to my parents, Zhong and Junyan, and my fiancée Yueran–
they are the real heroes.

9



10



Contents

1 Introduction 15
1.1 Rank-based statistical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.1.1 Quantile regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.1.2 Nonparametric independence testing . . . . . . . . . . . . . . . . . . . . . 18

1.2 Statistical methods based on multivariate rank/quantile . . . . . . . . . . . . . . . 21
1.2.1 Multiple-output quantile regression . . . . . . . . . . . . . . . . . . . . . . 21
1.2.2 Nonparametric independence testing for random vectors. . . . . . . . . . 23

1.3 OT-based rank/quantile and its applications . . . . . . . . . . . . . . . . . . . . . 25
1.3.1 OT-based rank/quantile . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.3.2 Multiple-output quantile regression via OT-based quantile function . . . 28
1.3.3 Multivariate nonparametric independence testing via OT-based rank . . . 28

1.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2 Multiple-output quantile regression via optimal transport 31
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.1.1 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.1.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 MCQR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.1 Univariate CQR revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.2 Multiple-output CQR via optimal transport . . . . . . . . . . . . . . . . . 35
2.2.3 Solving MCQR via linear programming . . . . . . . . . . . . . . . . . . . . 36

2.3 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.5 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.5.1 Preliminaries on optimal transport theory . . . . . . . . . . . . . . . . . . 43
2.5.2 Additional notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.5.3 Proof for Lemma 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.5.4 Proof for Lemma 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.5.5 Proof for Proposition 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.5.6 Proof for Theorem 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.5.7 Proof for Lemma 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.5.8 Proof for Lemma 2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.5.9 Proof for Theorem 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.6 Ancillary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.7 Spatial reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

11



CONTENTS CONTENTS

2.8 Spatial quantile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3 Coverage Correlation Coefficient: Beyond Functional Correlation 73
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.1.1 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.2.1 Univariate case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.2.2 Multivariate case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.3.1 Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.3.2 Power comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.4 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.4.1 Proof of Theorem 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.4.2 Proof of Proposition 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.4.3 Proof of Proposition 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.4.4 Proof of Theorem 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.4.5 Proof of Theorem 3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.5 Some general results for the vacancy . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.6 Additional Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.6.1 Proof of Lemma 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.6.2 Proof of Lemma 3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.7 Auxiliary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Bibliography 109

12



List of Figures

1.1 Illustration of check function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1 Illustration of proofs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2 Logarithmic average loss, measured in matrix Mahalanobis norm, of the regres-

sion coefficient estimated by MCQR, CoorCQR, SpQR and LS for data generated
according to the mechanism described in Section 2.4 for various sample size n,
covariate dimension p and response dimension d and four different noise distri-
butions (panels (a) to (d)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3 Logarithmic average estimation loss, measured in matrix Mahalanobis norm, of
the regression coefficient estimated by MCQR, CoorCQR, SpQR and LS for data
generated according to the mechanism described in Section 2.4 for various outlier
contamination proportion (from 0.05 to 0.5), covariate dimension p and response
dimension d and two different noise contamination models. We fix n = 200. . . . 42

3.1 Chatterjee’s correlation of various (X, Y ) pairs using a sample of n = 1000
observation pairs. Data generating mechanism are as follows — first column:
X, Y

iid∼ N (0, 1); second column: X ∼ N (0, 1) and Y = sin(10X) + 0.5ϵ where
ϵ ∼ N (0, 1) ⊥⊥ (X, Y ); third column: X ∼ N (0, 1) and Y = XB + ϵ(1 − B),
where (B, ϵ) ∼ Bernoulli(1/2) ⊗ N (0, 1) ⊥⊥ (X, Y ); fourth column: X =
U sin(10πU) + 0.03ϵX and Y = U cos(10πU) + 0.03ϵY , where (U, ϵX , ϵY ) ∼
Unif[0, 1]⊗N (0, 1)⊗N (0, 1) ⊥⊥ (X, Y ). For each column, the top panel shows
the scatter plot and the bottom panel shows the line plot of ordered X ranks
against the corresponding Y ranks. . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.2 Two subcubes split the unit cube into 25 elementary cubes. . . . . . . . . . . . . . 82
3.3 Dependency measurements applied to increasing noisy dataset with linear corre-

lation model (3.14). The left-hand side presents a noiseless pattern of the samples
with n = 2000. The right-hand side is the power curve display the results of
various methods under the case of n = 1000, dX = dY = 1 and n = 2000, dX =
2, dY = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.4 Dependency measurements applied to increasing noisy dataset with correlation
based on Archimedean spiral and Lissajous curve. The left-hand side presents a
noiseless pattern of the samples with n = 2000. The right-hand side is the power
curve display the results of various methods under the case of n = 1000, dX =
dY = 1 and n = 2000, dX = 2, dY = 1. . . . . . . . . . . . . . . . . . . . . . . . . 85

13



LIST OF FIGURES LIST OF FIGURES

3.5 Dependency measurements applied to increasing noisy dataset with correlation
model (3.19). The left-hand side presents a noiseless pattern of the samples with
n = 2000. The right-hand side is the power curve display the results of various
methods under the case of n = 1000, dX = dY = 1 and n = 2000, dX = 2, dY = 1. 85

3.6 Dependency measurements applied to increasing noisy dataset with correlation
model (3.20). The left-hand side presents a noiseless pattern of the samples with
n = 2000. The right-hand side is the power curve display the results of various
methods under the case of n = 1000, dX = dY = 1 and n = 2000, dX = 2, dY = 1. 86

3.7 Dependency measurements applied to increasing noisy dataset with correlation
model (3.15) and (3.16). The left-hand side presents a noiseless pattern of the
samples with n = 2000. The right-hand side is the power curve display the
results of various methods under the case of n = 1000, dX = dY = 1 and
n = 2000, dX = 2, dY = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

14



Chapter 1

Introduction

Modern scientific research routinely confronts datasets contaminated by systematic errors and
outliers. This contamination poses significant challenges for traditional statistical methods that
rely on distributional assumptions or are sensitive to extreme values. The concept of rank-based
statistics emerges as a powerful alternative, offering robustness against data contamination while
remaining desirable property without distribution assumptions on the data. Rather than working
with raw observations, rank-based methods operate on the relative ordering of data points, effec-
tively mitigating the impact of outliers and reducing the influence of measurement errors. This
approach, pioneered by early statisticians like Wilcoxon [Wil92], Mann-Whitney [MW47] and
Siegel [Sid57], has gained renewed relevance in applications ranging from high-throughput ge-
nomics to financial data analysis [DK14; VG20; PA24]. However, modern treatment of this topic
focuses more on handling multivariate data. For instance, in the area of robust mean estimation,
Diakonikolas, Kane, and Pensia [DKP20], Lugosi and Mendelson [LM21], Depersin and Lecué
[DL22], and Minasyan and Zhivotovskiy [MZ23] have proposed various extensions of univariate
robust mean procedures such as the trimmed mean estimator [TM63] and median of means esti-
mator [NY83; JVV86; AMS96] to the multivariate setting. We witness a similar surge in research
interest in the area of robust covariance estimation [MZ20; AZ22; MZ23].

However, the extension of rank-based methods to multivariate settings presents fundamen-
tal challenges, as there is no natural ordering of points in higher dimensions that preserves the
desirable theoretical properties of ranks on the real line. Various concepts have been considered,
e.g. depth-based ranks [Tuk75; LS93; ZS00], spatial ranks [MO95; Cha96; Kol97], componen-
twise ranks [Hod55; Bic65], Mahalanobis ranks [HP02b; HP02a], but none of them enjoy the
distribution-freeness and essential maximal ancillarity while the traditional rank notion on real
line does.

Monge-Kantorovich rank, a concept of multivariate rank proposed in Chernozhukov et al.
[Che+17], Hallin [Hal17], and Hallin et al. [Hal+21] provides a new insight of traditional ranks
from the perspective of optimal transport (OT) map. It is robust to the outliers in natural, and
more importantly, it enjoys desirable properties that make the success of univariate rank. It has
been applied successfully in a variety of multivariate statistical problems, including two-sample
testing [DS21; Shi+21; SDH22a; HS23], multiple-output regression [CCG16; HHH23; BSH24;
YW24], dependency measurement [Shi+22; DS23], semiparametric estimation [HLL22], etc.

This thesis contributes two applications of the Monge-Kantorovich rank in multivariate statis-
tics: robust estimation of multiple-output linear model coefficient and dependency measurement
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Chapter 1 Introduction 1.1 Rank-based statistical methods

between multivariate random vectors. In Chapter 2, we propose a multivariate extension of the
traditional univariate composite quantile regression developed by Zou and Yuan [ZY08]. We es-
tablish both consistency and convergence rate results for this extension. Our work addresses
the gap in existing literature, as previous studies on multiple-output quantile regression using
OT have primarily focused on quantile contour estimation rather than linear model coefficient
estimation. In Chapter 3, we introduce a novel rank-based correlation coefficient with the fol-
lowing features: 1) it leverages the Monge-Kantorovich rank to measure dependency between
random vectors; 2) it enjoys a distribution-free asymptotic theory; 3) it is capable to detect not
only functional correlation, but also implicit functional correlation.

In the rest of this chapter, we establish foundations of our work by detailed presenting fun-
damental concepts and reviewing existing literature in rank-based statistical methods. The back-
ground material serves to provide readers with a comprehensive introduction to the field while
contextualising our proposed method within the current literature. We begin with traditional
univariate rank-based methods and their desirable properties in Section 1.1. We then review ex-
isting approaches for generalising the concept of rank from the real line to the multivariate case
in Section 1.2. Finally, we introduce the concept of Monge-Kantorovich rank and quantile, along
with their applications in regression and nonparametric statistics in Section 1.3.

Notations. For any integer d ≥ 1, we write B as the Borel σ-algebra of Rd. Write P(Rd) as the
set of Borel probability measures defined on (Rd,B). For any random variable X , we denote PX

to be its induced Borel probability measure and σ(X) to be the Borel sigma-algebra generated
by X . We write N (µ,Σ) as the Gaussian distribution with mean vector µ ∈ Rp and covariance
matrix Σ ∈ Rp × Rp. Given x = (x1, . . . , xd) ∈ Rd, we denote ∥x∥ =

(∑n
i=1 x

2
i

)1/2 to be
the Euclidean norm of x. Let d→ denote convergence in distribution and a.s.→ denote almost sure
convergence.

1.1 Rank-based statistical methods

For the univariate data, rank-based methods have become foundational in robust estimation and
nonparametric statistics. Particularly, quantile regression [KB78] and nonparametric indepen-
dence testing exemplify the remarkable efficiency of rank transformations. In this section, we
examine the problem formulation and existing approaches within these two areas.

1.1.1 Quantile regression

We consider a covariate-response pair (X, Y ) with joint distribution P (X,Y ) ∈ P(Rp × R) is
generated from linear regression model

Y = β⊤
∗ X + ε, (1.1)

where β∗ ∈ Rp is the regression coefficient and random noise ε is independent of X . Given i.i.d.
covariate-response pairs (X1, Y1), . . . , (Xn, Yn) drawn fromP (X,Y ), then the corresponding error
terms are εi = Yi − β⊤

∗ Xi, i = 1, . . . , n. The goal is to estimate β∗ when the random error term
possibly follows a heavy-tailed distribution.
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Chapter 1 Introduction 1.1 Rank-based statistical methods

The M-estimator represents a broad class of robust estimation methods. It is defined as the
empirical risk minimiser of a loss function ℓ : R → R≥0:

β̂ ∈ argmin
β∈Rp

1

n

n∑
i=1

ℓ(Yi − β⊤Xi).

In particular, by taking ℓ(t) = t2, we obtain the ordinary least squared (OLS) estimator of β∗:

β̂OLS = argmin
β∈Rp

1

n

n∑
i=1

(Yi − β⊤Xi)
2. (1.2)

It is known that under the Gauss-Markov assumptions: 1) E εi = 0; 2) Var(ε1) = Var(ε2) =

. . . = Var(εn) = σ2 < +∞; 3) Cov(εi, εj) = 0 for all i ̸= j, the OLS estimator β̂OLS attains the
minimal possible variance among all the linear unbiased estimator of β∗. Moreover, under the
same set of assumptions plus that D0 := 1

n

∑n
i=1XiX

⊤
i is non-degenerate, we have asymptotic

normality
√
n(β̂OLS − β∗)

d→ N
(
0, σ2D−1

0

)
, as n→ ∞. (1.3)

However, one can even extend the optimality to non-linear estimator by the maximal likelihood
estimator (MLE) provided the density function of the random error is known.

If ε1, . . . , εn have a known absolutely continuous density function p0 such that the Fisher
information iε1 =

∫
( ∂
∂x
ℓ(x))2p0(x) dx is finite, then we can obtain the MLE β̂MLE by letting

ℓ = − log p0. In particular, when ε1, . . . , εn follows a standard Gaussian distribution, the β̂MLE

coincides with the OLS estimator. Moreover, under some regularity conditions, we have asymp-
totic normality [Van00, Theorem 5.39]

√
n(β̂MLE − β∗)

d→ N
(
0,

{E(X1X
⊤
1 )}−1

iε1

)
. (1.4)

Indeed, the asymptotic variance in (1.4) attains the Cramer-Rao lower bound thus the MLE esti-
mator exhibits the optimality in the sense that it is asymptotically uniformly minimal-variance
unbiased estimator [see e.g. Van00, Section 5.5].

However, in practice, since p0 is typically unknown, the MLE estimator is not directly avail-
able, and the OLS estimator may not be optimal because its variance is proportional to σ2 (see (1.3))
and can blow up when the random error follows a heavy-tailed distribution. On popular way to
tackle the heavy-tailed error is based on the quantile regression (QR) [KB78]. The quantile regres-
sion approach determines the estimator of β∗ by solving the following optimisation problem:

β̂QR = argmin
β∈Rp

1

n

n∑
i=1

ρτ (Yi − β⊤Xi), (1.5)

where τ ∈ (0, 1) and ρτ : R → R≥0 is the so-called check function defined by ρτ (x) = max{x, 0}+
(τ − 1)x, for any x ∈ R (see Fig. 1.1). Unlike the OLS estimator, which estimates the conditional
mean function, the quantile regression estimator aims to estimate the conditional quantile func-
tion of Y given X . Specifically, note that the population counterpart of optimisation (1.2) is
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Chapter 1 Introduction 1.1 Rank-based statistical methods

minE(Y − β⊤X)2. Since the conditional mean E(Y | X) is the best projection of Y onto the
L2-space consisting of all σ(X)-measurable functions, OLS is effectively estimating E(Y | X)
through a linear model. On the other hand, the population counterpart of (1.5) is minE ρτ (Y −
β⊤X), and by calculating the saddle point of the objective function one can show that the min-
imiser of such an optimisation problem is the conditional quantile function qY |X(τ) := inf{y ∈
R : P(Y ≤ y|X) ≥ τ} for any τ ∈ (0, 1), which implies that quantile regression aims to estimate
the conditional quantile function of Y with a linear model. Since quantile as a functional is more
robust compared to the expectation functional, quantile regression is a more robust estimation
method. We guide the readers to [EL11] for analysis of mean and quantile as functionals from
the perspective of influence function.

Moreover, under some continuity conditions on p0, the estimator β̂QR has asymptotic nor-
mality as follows:

√
n(β̂QR − β∗)

d→ N (0, ω2D−1
0 ), (1.6)

where ω2 = τ(1− τ)/f 2
i (qi(τ)) with fi and qi are the density function and quantile function of

εi. Compared to the OLS estimator, the quantile regression estimator achieves
√
n-consistency

and asymptotic normality without requiring finite variance; however, its relative efficiency can
be arbitrarily small because the term f 2

i (qi(τ)) in (1.6) can be close to zero. Zou and Yuan [ZY08]
proposed a solution to this issue through the composite quantile regression (CQR) method, whose
loss function aggregates multiple quantile regression loss functions. Specifically, for any K ∈ N,
the CQR estimator β̂CQR is obtained by the following optimisation problem

(q̂1, . . . , q̂K , β̂
CQR) = argmin

q1,...,qK∈R, β∈Rp

n∑
i=1

K∑
k=1

ρτk(Yi − β⊤Xi − qk),

for τk = k/(K + 1). Zou and Yuan [ZY08] showed that the CQR estimator can achieve at least
70% relative efficiency compared to the OLS estimator even for Gaussian noise, and for the case
of non-Gaussian random error, it typically enjoys a much smaller variance.

However, when Yi is a multivariate response variable, neither the QR estimator (1.5) nor
the CQR estimator in (2.3) has a natural extension, due to the lack of well-defined multivariate
ranks/quantiles and corresponding multivariate check functions. While there is extensive liter-
ature on multiple-output quantile regression (please see Section 1.2.1 and 1.3.2 for details), the
extension of the CQR estimator remains unexplored. To bridge this gap, we propose a multiple-
output CQR estimator based on OT theory in Chapter 2.

1.1.2 Nonparametric independence testing
Another strength of rank-based methods lies in the problem of mutual independence testing.
Specifically, given PX and P Y are probability measures on Rd1 and Rd2 , respectively. Suppose
P (X,Y ) ∈ P(Rd) is the joint distribution of PX and P Y , where d = d1 + d2. In this section, we
focus on the case of univariate marginal distribution, i.e. d1 = d2 = 1, and consider the following
hypothesis

H0 : P
(X,Y ) = PX ⊗ P Y v.s. H1 : P

(X,Y ) ̸= PX ⊗ P Y (1.7)
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Chapter 1 Introduction 1.1 Rank-based statistical methods

Figure 1.1: Illustration of check function.

x

ρτ (x) := x+ + (τ − 1)x

τx(τ − 1)x

Traditional approaches to the two-sample independence testing problem often rely on specific
distributional assumptions. The Pearson correlation test [Pea20], which remains widely used in
practice, assumes bivariate normality and focuses exclusively on linear relationships. The likeli-
hood ratio test [Wil38], requires explicit parametric specifications of the underlying distributions,
making its power heavily dependent on the validity of these assumptions. These distributional
dependencies have motivated the development of rank-based nonparametric testing procedures,
such as Spearman’s rank correlation and Kendall’s τ coefficient [Ken38; Spe04].

There have been various of non-parametric methods proposed to try to mitigate such distri-
butional assumptions. One of the earliest line of work are based on joint cumulative distribution
functions and ranks. Hoeffding [Hoe94] pioneered this approach by introducing a test statis-
tic based on the discrepancy between the empirical joint distribution function and the product
of marginal distribution functions, which was later extended in Blum, Kiefer, and Rosenblatt
[BKR61] and Yanagimoto [Yan70]. Mosteller [Mos46] introduced a dependency measure called
the quadrant count ratio, further developed in [Blo50]. Subsequently, Rosenblatt [Ros75] pro-
posed a test procedure based on density estimation. Bergsma and Dassios [BD14] introduced
a modified version of Kendall’s τ that ensures consistency under mild conditions on the joint
distribution F , with further theoretical analysis provided in Nandy, Weihs, and Drton [NWD16]
and Weihs, Drton, and Leung [WDL16]. Another line of work is based on kernel method. The
Hilbert-Schmidt Independence Criterion (HSIC), introduced by Gretton et al. [Gre+05a; Gre+07],
has proven particularly versatile. This approach was subsequently adapted by Sen and Sen [SS14]
for independence testing in linear models, while Ramdas et al. [Ram+15] established its theoret-
ical properties in high-dimensional settings. The framework was further generalized by Pfister
et al. [Pfi+18] to handle K-sample (K ≥ 2) independence testing. Other proposals include co-
efficient based on copulas [Skl59; SW81; DSS13; LHS13; Fuc24; GJT22; SDS24]; correlation co-
efficient based on pairwise distance [SR09; SRB07; HHG13], OT-based method [NSM21; MS22;
Wie22; MS20]. We refer the readers to [DK01; JH16; TOS22; Cha24] and the references therein
for extensive reviewing on this area.

Despite some of these correlation coefficients being consistent under fixed alternatives, there
are several common problems. First, most of the correlation coefficients are designed for indepen-
dence testing not for measuring the strength of the relationship between the variables. Secondly,
although some of the coefficient enjoys consistency under a fixed alternative, most of them are
lack of a distribution-free null asymptotic theory. In the absence of such result, one need to resort
to permutation-based method to obtain a p-value, which is quite computationally expensive, and
the issue becomes even more prohibitive under the case of multiple testing.
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Chatterjee [Cha21] proposed a simple rank-based coefficient of correlation solves the issues
mentioned above. Specifically, given n independent copies (X1, Y1), . . . , (Xn, Yn)

iid∼ P (X,Y ) ∈
P(R2), and assuming no ties in (Xi)1≤i≤n and (Yi)1≤i≤n. Then we can rearrange the data as
(X(1), Y(1)), . . . , (X(n), Y(n)) such thatX(1) < · · · < X(n). Chatterjee’s correlation is then defined
as

ξ(X,Y )
n := 1−

∑n−1
i=1 |ri+1 − ri|
(n2 − 1)/3

, (1.8)

where ri := #{j : Y(j) ≤ Y(i)} is the rank of Y(i). It is shown to enjoy the following desirable
properties:

(I) If Y is not almost surely a constant, then as n→ ∞, we have

ξ(X,Y )
n

a.s.→ ξ(X,Y ) :=

∫
Var(E(1Y≥t | X)) dµ(t)∫

Var(1Y≥t) dµ(t)
. (1.9)

Moreover, ξ(X,Y ) = 0 if and only if X and Y are independent, and ξ(X,Y ) = 1 if and only if
there exists a measurable function f : R → R such that Y = f(X) almost surely.

(II) WhenX and Y are independent, as n→ ∞, ξn enjoys the following asymptotic normality:

√
nξ(X,Y )

n
d→ N (0, 2/5).

(III) The coefficient can be computed in time O(n log n).

Given its simplicity and nonparametric nature, Chatterjee’s correlation has been applied across
various practical fields [e.g. Sad22; Suo+24], despite being a relatively recent development. With
these desirable properties, the Chatterjee’s coefficient has attracted much attention recently, such
as the power analysis of the coefficient [SDH22b; ADN21; LH23; Bic22], asymptotic theory under
the alternative [LH22; Kro24], multivariate extension [AC21; DGS20; Han21; AF24], measuring
conditional independence[AC21; HDS22; SDH24; HH24].

As one may note, Chatterjee’s correlation coefficient (1.8) is intentionally asymmetric, i.e.,
ξ
(X,Y )
n ̸= ξ

(Y,X)
n . This design aims to detect the functional relationship between variables, specif-

ically, whether Y is a function of X or vice versa. However, this means that Chatterjee’s corre-
lation may not be powerful in detecting dependence between X and Y mediated through their
respective functional dependence on some hidden variable H . Moreover, although there have
been some existing work on the multivariate extension of ξ(X,Y )

n [e.g. DGS20; AF24], none of
them are exact distribution-free.

In Chapter 3, we introduce a new correlation coefficient motivated by a geometric interpreta-
tion of Chatterjee’s correlation. We demonstrate that the proposed coefficient satisfies both con-
sistency and asymptotic normality under only absolutely continuous condition on the marginal
distributions, while maintaining computational efficiency with an O(n log n) algorithm in uni-
variate case. Furthermore, by leveraging the concept of Monge-Kantorovich rank, our proposed
coefficient provides a natural multivariate framework for measuring dependence between ran-
dom vectors X and Y .

20



Chapter 1 Introduction 1.2 Statistical methods based on multivariate rank/quantile

1.2 Statisticalmethods based onmultivariate rank/quantile
Building upon the univariate rank-based methods discussed in the previous section, we now
turn our attention to their multivariate extensions. While univariate rank transformations pro-
vide powerful tools for robust estimation and nonparametric testing, extending these concepts to
multivariate case introduces significant theoretical and computational challenges. The absence of
a natural ordering in multivariate spaces requires more sophisticated approaches to define ranks
and quantiles. In this section, we examine several key frameworks that generalise rank-based
statistical methods to multivariate settings, focusing particularly on the theoretical foundations
and statistical properties that emerge in multivariate applications.

1.2.1 Multiple-output quantile regression
We consider similar coefficient estimation problem as in Section 1.1.1, but under multiple-output
linear model. Suppose we have covariate-response pair (X, Y ) with joint distribution P (X,Y ) ∈
P(Rp × Rd), where d, p ≥ 1, that is generated from

Y = b∗X + ε, (1.10)

with regression coefficient b∗ ∈ Rd×p and a noise vector ε taking values in Rd independent of X .
Given (X1, Y1), . . . , (Xn, Yn) are i.i.d. samples from P (X,Y ), we aim to develop a robust estimation
for the regression coefficient b∗ in the case of a multivariate heavy-tailed random error term.

The traditional OLS estimator (1.2) can be adopted for multiple-output linear model (1.10) by
letting ℓ(t) = ∥t∥2, where t ∈ Rd. However, since the asymptotic variance of such OLS estimator
depends on the covariance matrix of ε, it is not a reliable estimation when the random error term
follows some multivariate heavy-tailed distribution, e.g. the multivariate t-distribution [Rot12].
This motivates us to consider a multivariate extension of the quantile regression estimator.

The generalisation of the idea of quantile regression to the multivariate case has been a rather
long history in statistics. Many concepts have been considered in the literature, including coor-
dinatewise quantiles, projection method, spatial quantile, halfspace depth method. The idea of
coordinatewise rank/quantile dates back to 1950s and 1960s by Hodges [Hod55], Bickel [Bic65],
Puri and Sen [PS66], Sen and Puri [SP67], and Puri and Sen [PS67; PS71]. In the context of Rd, the
coordinatewise rank is defined to be a tuple of marginal orderings on the real line. However, this
approach lacks rotation invariance and fails to achieve distribution-freeness, limiting its applica-
bility. As a result, our investigation focuses on the latter three methodologies mentioned above:
projection-based methods, spatial quantiles, and halfspace depth methods.

Given a d-dimensional random variable Y , the key idea of the projection method is that for
each unit vector u ∈ Rd and τ ∈ (0, 1) the τ -quantile of u⊤Y is well-defined. By utilising
this idea, Kong and Mizera [KM12b] defines the directional quantile of order τ for vector u as
qY ;KM(τu) := qu⊤Y (τ) · u, where

qu⊤Y (τ) = inf{y : P(u⊤Y ≤ y) ≥ τ},

which can induce a quantile halfspace H+
KM,τu := {z ∈ Rd : u⊤(z − qY ;KM(τu)) ≥ 0}. There-

fore, for any fixed quantile level τ ∈ (0, 1/2), the τ -quantile contour can be constructed by
DKM(τ) :=

⋂
u∈Sd−1 H

+
KM,τu. However, in practice, one needs to sample a large number of unit
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vector on Sd−1 to obtain an estimator of DKM, which can be computationally inefficient. More-
over, this definition depends on the choice of origin and also lack of affine equivariance, which
are undesirable.

Another important step on this direction is proposed by Hallin, Paindaveine, and Šiman
[HPŠ10]. Instead of considering the quantile of u⊤Y directly, [HPŠ10] projects Y onto u and its
orthogonal space, and then they construct the quantile hyperplane by running a regular quantile
regression. Specifically, for any fixed u ∈ Sd−1, let Γu ∈ Rd×(d−1) such that (u,Γu) ∈ Rd×d be a
unit orthonomal basis. Let Zu := u⊤Z and Z⊥

u := Γ⊤
uZ . Then the HPŠ’s τu-quantile hyperplane

is obtained by regressing Zu on Z⊥
u and an intercept term under the check function. In detail, the

HPŠ’s τu-quantile hyperplane is

HHPŠ,τu := {z ∈ Rd : u⊤z = b⊤τ Γ
⊤
u z + aτ}, (1.11)

where (bτ , aτ ) is obtained by

(bτ , aτ ) ∈ argmin
(a,b)∈Rd

E ρτ (Zu − b⊤Z⊥
u − a). (1.12)

Thus the corresponding quantile halfspace follows as H+
HPŠ,τu := {z ∈ Rd : u⊤z ≥ b⊤τ Γ

⊤
u z+ aτ},

and thus the τ -quantile contour is DHPŠ(τ) =
⋂
u∈Sd−1 ∩H+

HPŠ, τu, where ∩H+
HPŠ, τu is inter-

section of all hyperplanes that satisfy (1.11). It is shown in [HPŠ10] that this concept of mul-
tivariate quantile enjoys many desirable properties including, affine-invariance, strong consis-
tency, asymptotic normality and Bahadur-type representation. Moreover, in term of the empir-
ical estimation, the method also enjoy an efficient algorithm due to its close relationship with
Tukey’s depth; see also [PŠ12; PŠ12]. This concept of multivariate quantile can also be immedi-
ately adopted into the problem of multiple-output nonparametric quantile regression (see [HPŠ10,
Section 6]), however, as pointed out in [Hal+15], the resulting quantile contours carries little in-
formation on the population conditional quantile of Y given X = x, but some average version
of the latter. We refer the readers to [Hal+15] for more discussions on this direction.

Spatial/geometric quantile is another concept of multivariate quantile pineered by Chaudhuri
[Cha96], and later developed in [MO95; MOT97; Kol97; CM97; BMG14; CC96; CC17; CC14; KP23]
and many others. The definition starts from the form of traditional check function ρτ (·). Note
for any z ∈ R the traditional check function can be rewritten in the following way

ρτ (z) =
1

2
(|z|+ (2τ − 1)z) =

1

2
(|z|+ vz),

where v = 2τ − 1. Thus a natural extension of the check function to the multi-dimensional case
is

Φv(z) :=
1

2
(∥z∥+ v⊤z),

where v = τu, and u ∈ Sd−1. Therefore, given τ ∈ (0, 1) and u ∈ Sd−1, for a multivariate
random variable Y , we may define its τu-quantile as

qY ;SP(τu) := argmin
y∈Rd

E
[
Φτu(Y − y)− Φτu(Y )

]
,
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where the additional Φτu(Y ) term is to make sure the optimisation problem is well-defined even
for Y does not have finite first moment. In fact, by differentiating with respect to y, the solution
of the above is equivalent to the following equation

E
[ Y − qY ;SP(τu)

∥Y − qY ;SP(τu)∥

]
= −τu.

Intuitively speaking, this indicates that qY ;SP(τu) defines a point in Rd such that the average unit
vector from it to other random samples is τu. The generalisation to quantile regression setting
is quite straightforward by applying the spatial quantile definition to Y − bX . However, similar
to the concept proposed in Kong and Mizera [KM12b], given a quantile level, in order to come
up with a quantile contour via the definition above one need to sample a large number of unit
vector on Sd−1, which makes it computationally inefficient.

The idea of depth-based methods also lies at the core of multivariate quantile/rank theory.
Unlike spatial methods or projection-based approaches, which attempt to generalise the analytic
formulation of univariate quantiles, statistical depth describes multivariate data from a geomet-
ric perspective. Tukey [Tuk75] first introduced the concept of halfspace depth in 1970s, and
was popularised by Donoho and Gasko [DG92]. Later, Liu [Liu90] proposed simplicial depth,
Liu [Liu92], Zuo and Serfling [ZS00], and Zuo [Zuo03] considered projection depth, Vardi and
Zhang [VZ00] proposed spatial depth. For the regression setting, pioneer regression depth was
proposed in Rousseeuw and Hubert [RH99], and we refer the readers to Zuo [Zuo21] for a com-
prehensive survey. Although depth-based methods typically offer appealing geometric intuition
and affine-invariance properties, their implementation frequently results in computationally inef-
ficient algorithms. Furthermore, most depth formulations can only characterise convex support
regions, creating limitations when analysing distributions supported on non-convex domains.
Chernozhukov et al. [Che+17] and Hallin et al. [Hal+21] addressed this limitation by introduc-
ing the Monge-Kantorovich depth, founded on measure transportation theory, which effectively
captures non-convex support structures. We will investigate this innovative approach in detail
in Section 1.3.

Among the various concepts of multivariate quantile mentioned above and their applications
in regression settings, two significant problems persist: 1) the constructed quantile contours can-
not capture potential non-convexity in the distribution of interest; and 2) most concepts are suit-
able only for non-parametric quantile regression, with few can be adopted for the problem of
linear model coefficient estimation. In Chapter 2, we propose a regression coefficient estimation
method that leverages the concept of Monge-Kantorovich rank/quantile, effectively addressing
these two problems.

1.2.2 Nonparametric independence testing for random vectors.
In Section 1.1.2, we introduced the problem of nonparametric independence testing under uni-
variate marginal distributions. Many approaches have been proposed for nonparametric inde-
pendence testing under the multivariate setting. Specifically, we consider the same hypothesis as
in (1.7), but extend the framework for max{d1, d2} ≥ 2.

The problem turns out to be much more challenging, and the solutions have not been dis-
covered until recent years. The first significant line of work was initiated by Székely, Rizzo, and
Bakirov [SRB07], who proposed a new dependence measure termed distance covariance for any
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two random vectors with finite first moments. Tests based on distance covariance offer many
appealing properties, such as computational efficiency and consistency against all alternatives
with finite means; see [MS19] for further discussions. Subsequently, Székely and Rizzo [SR09]
explored a generalisation to stochastic processes, while Lyons [Lyo13] and Jakobsen [Jak17] de-
veloped generalisations to general metric spaces. Another distance-based method propose re-
cently is [KBW20], where the authors proposed a projection test statistics based on Cramér-von
Mises divergence. The second important track of work is kernel-based methods, pioneered by
Gretton et al. [Gre+05b; Gre+07], where they proposed the HSIC, and Gretton et al. [Gre+12]
introduced a class of distance between probability measures, call maxiaml mean discrepancy
(MMD). Interestingly, in [Sej+13], the authors showed an equivalence between the distance-based
method and the kernel-based method in general metric spaces. Other constructions include pari-
wise distance based methods [HGH12], Wasserstein distance-based method [Wie22; MS20; MS22;
Oza+19; XW19]. Rank-based method is another active area in recent years. The key challenge
is to generalise the concept of rank on the real line to higher dimensional space so that one can
adopt those traditional rank-based methods mentioned in Section 1.1.2 to the case of multivariate
marginal distributions. In the rest of this section, we will concentrate on this specific direction
since it is more relevant to later chapters of this essasy.

Rank-based method is mainly classifed into two categories: graph-based method and OT-
based method. The correlation coefficient proposed by Chatterjee [Cha21] and Azadkia and Chat-
terjee [AC21] initiate a line of work based on k-nearest neighbor graph. To clarify, let’s revisit
the limit of Chatterjee’s correlation coefficient defined in (1.9) and examine its numerator:∫

Var(E(1{Y≥t} | X)) dµ(t) =

∫
E
(
P2(Y ≥ t | X)

)
dµ(t)−

∫
P2(Y ≥ t) dµ(t).

A key step used in [Cha21] to approximate the conditional probability P2(Y ≥ t | X) on the
right-hand side of the above is the following approximation:

P(Y1 ≥ t) ≈ P(YN(1) ≥ t),

where N(1) is the index i ∈ [n] \ {1} such that Xi is the nearest neighbor of X1. Heuristically,
the distribution of Y1 should be close to the conditional distribution of YN(1) due to the close-
ness of X1 and XN(1) ([See Cha21, Corollary A.9.]). By leveraging this idea, Deb, Ghosal, and
Sen [DGS20] and Huang, Deb, and Sen [HDS22] constructed new dependency measurement and
the corresponding empirical estimation for independence and conditional independence test on
general metric spaces, and Deb, Ghosal, and Sen [DGS20] also generalise Chatterjee’s correlation
to the case of multivariate marginal distributions. The graph-based methods have many desir-
able properties including distribution-freeness, strong consistency, computational efficiency, etc.
However, as pointed out in [SDH22b; SDH24; ADN21; CB20], graph-based methods can lack
power in certain scenarios where traditional coefficients, such as Kendall’s τ , achieve optimal
rates. Several modifications have been proposed to enhance the power performance of graph-
based methods [LH23].

Another class of rank-based methods relies on the concept of multivariate rank. This direction
has flourished in recent years, particularly following Chernozhukov et al. [Che+17] and Hallin et
al. [Hal+21]’s introduction of OT-based multivariate rank/quantile. We will explore this approach
in Section 1.3.3, after briefly introducing the OT-based ranks/quantiles.
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1.3 OT-based rank/quantile and its applications
In the last section, we reviewed traditional statistical methods for addressing multivariate multiple-
output quantile regression and nonparametric independence testing with multivariate marginal
distributions. For the regression problem, existing frameworks yield only convex quantile level
sets, which becomes problematic when the underlying random error follows a distribution with
non-convex support. For the independence testing problem, most previous approaches fail to
achieve exact or even asymptotic distribution-free properties, requiring permutation-based meth-
ods to compute p-values, leading to high computational costs.

Chernozhukov et al. [Che+17] and Hallin et al. [Hal+21] introduced a new multivariate rank/quan-
tile framework based on OT theory. This approach preserves many of the desirable properties
that have made univariate rank/quantile methods successful. In this section, we first introduce
this new concept of rank/quantile in Section 1.3.1, then dive into its applications in quantile re-
gression and independence testing in Section 1.3.2 and 1.3.3.

1.3.1 OT-based rank/quantile

We first give a very brief overview of OT theory. Given µ ∈ P(Rd) is a probability measure on
Rd. For any map T : Rd → Rd, we define ν := T#µ to be another probability measure on Rd

such that (T#µ)(A) = µ(T−1(A)) for all A ⊂ B. We call ν is a push-forward measure of µ under
T . Thus, on the space of random variable, if X ∼ µ, then T (X) ∼ ν.

The OT problem was first formulated in 1781 by Monge [Mon81], i.e. the Monge’s problem.
Specifically, we consider the following optimisation problem:

inf
T

∫
Rd

∥x− T (x)∥2 dµ(x) such that T#µ = ν.

We call the solution of this problem as the optimal transport map. Then a natural question con-
cerns the existence and uniqueness of solutions to this optimisation problem. Unfortunately,
solutions do not always exist, and the problem itself can be even be ill-posed. For instance, one
can never find a pushfoward map from a finite discrete distribution to a continuous distribu-
tion. However, the following phenomenal theorem guarantees the existence when µ and ν are
absolutely continuous.

Theorem 1.1 (Brenier’s Theorem). Let µ, ν be absolutely continuous probability measures on Rd,
with finite second moments. Then there exists a convex function φ and its Legendre conjugate
φ∗(v) = supu∈Rd{⟨v, u⟩ − φ(u)} for v ∈ Rd, such that the maps R := ∇φ and Q := ∇φ∗

satisfy: 1) R is the optimal transport map from µ to ν, Q is the optimal transport map from ν to µ;
2)R andQ are almost everywhere unique; 3)R◦Q(x) = x andQ◦R(y) = y, for x, y ∈ Rd almost
everywhere.

Note that, when d = 1, the cumulative distribution function of µ is the optimal transport
map between µ to the uniform distribution Unif([0, 1]), and the quantile function is the optimal
transport map from Unif([0, 1]) to µ. Based on this instructive observation and Theorem 1.1,
define a new notion of multivariate rank/quantile in the population level can be defined as follows.
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Definition 1.1 ([Che+17; Hal+21]). Given ν to be an absolutely continuous reference distribu-
tion. Then for any absolutely continuous distribution µ, the optimal transport map from µ to ν
is defined to be the population rank map and the optimal transport map from ν to µ is defined to
be the population quantile map.

Note the definition allows multiple choices for the reference distribution ν, including uniform
sphere distribution, Unif([0, 1]d), and even normal distribution. There is no optimal choice for the
reference distribution, as it depends on the specific problem to be solved. For example, Deb and
Sen [DS23] uses Unif([0, 1]d) for theoretical analysis convenience, while Hallin et al. [Hal+21]
employs a spherical uniform distribution to construct a center-outward rank for maximal ancil-
larity. Moreover, the population distribution µ is typically not available in practice, instead, we
only have access to a sample of data X1, . . . , Xn

iid∼ µ. Therefore, one need to come up with an
empirical estimation of the rank/quantile map. There are two types of approaches to define the
empirical multivariate ranks and quantiles using the notion in Definition 1.1: discrete-discrete
type [DS23; Hal+21], i.e. discrete dataset with discrete samples from the reference distribution,
discrete-continuous type [GS22], i.e. discrete dataset with continuous reference distribution. We
summarise these two different notions here.

For the discrete-discrete type of rank, estimating the population rank of X1, . . . , Xn requires
a set of d-dimensional discrete points U = {u1, . . . , un}. The empirical population rank is then
obtained as the optimal transport map between two empirical distributions: 1

n

∑n
i=1 δXi

and
1
n

∑n
i=1 δui , which can be formulated as a optimal assignment problem. Specifically, let Sn be

the set of all permutations of [n], and

π∗ := argmin
π∈Sn

n∑
i=1

∥Xi − uπ(i)∥2. (1.13)

Then the empirical rank is

R̂X(Xi) = uπ∗(i), for i = 1, . . . , n,

and the empirical quantile map is its inverse. There are several possible choices for U . One
approach is to select U as a deterministic sequence that approximates the population reference
distribution, such as Unif([0, 1]d). For example, Deb and Sen [DS23] uses the Halton sequence
to approximate the uniform distribution on [0, 1]d, while Hallin et al. [Hal+21] employs a fixed
regular grid to approximate a spherical uniform distribution. In this case, one may usually pre-
fer to choose a U that has a low approximation error to the population reference distribution
and computationally efficient. The readers may find more discussion from [DS23, Section D.3].
Another strategy is that instead of using deterministic sequence, one can simply draw a set of
random samples from the reference distribution [Che+17]. While empirical ranks constructed
this way offer theoretical advantages, they lose deterministic properties due to their random na-
ture. Moreover, this approach requires recalculation of all samples whenever the sample size n
increases by one. While these approaches differ in their theory and implementation, the resulting
empirical ranks/quantiles both share the elegant property of distribution-freeness.

For the discrete-continuous rank type, we calculate the empirical rank map directly by finding
the optimal transport map between the empirical measure 1

n

∑n
i=1 δXi

and an absolutely contin-
uous reference distribution ν. This approach eliminates the need to approximate the reference
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distribution using a set of data points U . By Theorem 1.1, the quantile function, i.e. the optimal
transport map from ν to 1

n

∑n
i=1 δXi

can be a.e.-uniquely obtained by

Q̂X := argmin
T

∫
Rd

∥x− T (x)∥2 dν(x) such that T#ν =
1

n

n∑
i=1

δXi
. (1.14)

Moreover, by Theorem 1.1, except a zero mass set, Q̂X can be expressed as Q̂X = ∇φ̂ for some
convex function φ̂ : Rd → R∪{+∞}; when φ̂ is not differentiable at some point u ∈ Rd, Q̂X(u)

is defined to be any point within the subdifferential of φ̂, i.e. ∂φ̂(u). Therefore, Q̂X defines a
partition of Supp(ν) = ∪ni=1Pi, where Pi = {u ∈ Supp(ν) : Q̂(u) = Xi}, and ν(Pi) = 1/n.
Then suppose φ̂∗ : Rd → R is the Legendre conjugate of φ̂, i.e. φ̂∗(v) = supu∈Rd{⟨u, v⟩ − φ̂(u)},
the empirical rank transformation R̂X : Rd → Rd is defined to be

R̂X := ∇φ̂∗.

However, due to the non-continuity of the empirical measure, the rank transformation might
not be uniquely defined on X1, . . . , Xn. In fact, R̂X(Xi) can be any point of set Pi. In [GS22],
the authors define R̂X(Xi) to be a random point drawn from the conditional distribution of ν
restricted on Pi, i.e.

R̂X(Xi) | X1, . . . , Xn ∼ νi,

where νi(B) = nν(Pi ∩ B) for any B ∈ B. In particular, if ν is a uniform distribution, then
R̂X(Xi) is drawn uniformly from Pi. Although this specific choice of R̂X(Xi) introduce addi-
tional randomness, it is shown in [GS22, Lemma 3.4] that the resulting marginal distribution of
the multivariate rank is indeed distribution-free.

Comparing two types of empirical OT-based rank/quantile maps above, the discrete-discrete
type of method immediately generates the rank map and quantile map, and maintains distribution-
freeness. However, it does not lead to a smooth quantile function/contour, some smoothing in-
terpolation techniques are required [Hal+21]. In contrast, the second method naturally yields to
a notion of quantile function, but does not automatically lead to an empirical rank map. From
a computational perspective, the optimisation problem (1.13) can be solved by classical Hun-
gairan algorithm with a time complexity O(n3) (faster approximation solution is possible [see
e.g. SDH22a, Section 5]), while the semi-continuous OT problem involves the construction of
power diagram thus result in an algorithm with worst complexity of O(n⌊d/2⌋) for d > 2; see
[Aur87] for details.

Compared with other notion of multivariate ranks/quantile mentioned in Section 1.2.1, the
new concept based on OT enjoys many desirable properties including exact distribution-freeness
(see [Hal+21, Proposition 2.5], [DS23, Proposition 2.2] and [GS22, Lemma 3.4]) and strong con-
sistency (see [Hal+21, Proposition 2.4], [DS23, Theorem 2.1], [GS22, Theorem 4.1]). Moreover,
unlike other multivariate quantile notion, the OT-based quantile contour is not constructed via
intersection of halfspace or averaging directions, thus it can capture the non-convexity support
of the interest distribution [Che+17; BSH24], which makes the induced statistical methods more
robust and flexible in handling complex data structures.

In the next two sections, we review some applications of this new notion of multivariate
ranks/quantiles in modern multivariate statistics, especially in the context of quantile regression
and independence testing.
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1.3.2 Multiple-output quantile regression via OT-based quantile func-
tion

A pioneer work attempts to generalise quantile regression to the case of multiple-output linear
model via OT theory was conducted by Carlier, Chernozhukov, and Galichon [CCG16]. The
authors consider a heteroskedastic linear model

qY |X(U) = β∗(U)
⊤X, (1.15)

where Y, U ∈ Rd and X ∈ Rp is independent with U , qY |X : [0, 1] × Rp → R is the conditional
quantile function of Y defined as qY |X=x(τ) = inf{y : P(Y ≤ y|X = x) ≥ τ} for any τ ∈ [0, 1],
x ∈ Rp, and β∗ : Rd → Rp×d is the regression coefficient functional. The authors observed that
if equation (1.15) holds, then U is a solution to the optimisation problem:

max{E(V ⊤Y ) : V ∼ FU , E(X|V ) = EX}. (1.16)

Furthermore, solving the dual problem of the above yields the true coefficient functional β∗
from (1.15) (see [CCG16, Theorem 3.2]). Although the authors didn’t mention the concept of
multivariate quantile, the optimisation problem (1.16) implicitly solves for the optimal transport
map between Y and U .

Building on the optimal transport (OT)-based quantile framework introduced in [Hal+21],
Barrio, Sanz, and Hallin [BSH24] developed a non-parametric approach for multiple-output quan-
tile regression. Their method constructs a smooth interpolation based on the empirical quantile
map to generate quantile tubes in multi-dimensional spaces. This approach was later extended
to manifold settings by Hallin and Liu [HL24]. However, both of them focus on non-parametric
quantile regression and concentrate on estimating the quantile contours rather than focusing on
the robust estimation of the regression coefficients defined in (1.10).

In Chapter 2, we propose a multiple-output composite quantile regression estimator based on
optimal transport theory. To the best of our knowledge, this is the first work applies the idea of
OT-based quantiles to robust coefficient estimation in multiple-output linear models.

1.3.3 Multivariate nonparametric independence testing viaOT-based rank
The emergence of OT-based multivariate ranks has inspired many new distribution-free approaches
on independence testing between two random vectors. Given (X1, Y1), . . . , (Xn, Yn)

iid∼ P (X,Y ),
we denote Zi = (Xi, Yi) for i = 1, . . . , n, consider the hypothesis (1.7) with max{d1, d2} > 1.

Ghosal and Sen [GS22] proposed a test statistic, which measures the L2-distance between the
OT-based rank of Zi and the product of OT-based ranks of Xi and Yi, and similar test statistic
can be constructed for independence testing of more than two samples. However, the asymptotic
theory under the null is not established, thus a permutation-based method is required to obtain
the p-value. A more systematic investigate is carried out by Deb and Sen [DS23], where both
two-sample goodness-of-fit test and two-sample independence test are considered. The authors
revisit the distance covariance by [SRB07]. As mentioned in Section 1.1.2, a notable drawback of
distance covariance method is that its null distribution depend on the marginal distribution PX

and P Y . As a consequence, the test are no longer distribution-free and permutation analysis has
to be conducted in order to implement them. To overcome this, Deb and Sen [DS23] developed an
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asymptotically distribution-free test statistic by replacing the original observations Xi and Yi in
the empirical distance covariance with their respective OT-based multivariate ranks R̂X(Xi) and
R̂Y (Yi), enabling explicit p-value computation. Independently, Shi, Drton, and Han [SDH22a] de-
veloped a similar test statistic, though they employed a different concept of OT-based multivariate
rank with a different reference distribution than that used in Deb and Sen [DS23]. Building on
this line of research, Shi et al. [Shi+22] established a general framework for designing consistent
independence tests using the center-outward OT-based rank proposed by Hallin et al. [Hal+21].
Another work by Shi et al. [Shi+21], take up the same concept of multivariate rank to develop
the multivariate analogues of the sign quadrant statistic, Kedall’s tau and Spearman’s rho. Their
work not only proves the asymptotic distribution-free property of these tests but also establishes
a multivariate Chernoff-Savage type lower bound to demonstrate the relative efficiency of the
proposed test.

However most of the coefficient in the above can only characterise the potential functional
correlation between X and Y , for instance, see Property (I) for Chatterjee’s coefficient. In the
case of spurious correlation through some confounders, the effectiveness of these methods are
unkonwn. We bridge this gap by proposing a new coefficient of correlation for random vectors
through OT-based rank in Chapter 3. Unlike many existing coefficients, the proposed coefficient
can not only detect functional correlations, but also spurious correlations. Moreover, thanks to
the distribution-freeness of OT-based rank, the proposed coefficient enjoys a simple asymptotic
theory without any assumptions on the marginal distributions, which avoiding any permutation
techniques to obtain p-values.

1.4 Overview
The rest of this essay is organised as follows. Chapter 2 presents a robust method for estimating
coefficients in multiple-output linear models, which extends univariate CQR to multivariate re-
sponse variables by employing OT-based techniques. In Chapter 3, by leveraging the OT-based
multivariate ranks, we propose a new correlation coefficient for measuring dependence between
two random vectors which enjoys a simple form and a distribution-free asymptotic theory under
the null.
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Chapter 2

Multiple-output quantile regression via op-
timal transport

2.1 Introduction
The area of robust statistics has seen a revival of interest in recent years, both in Statistics and
Computer Science. This is partly due to the fact that the massive surge in data volumes brings
about a significant demand for efficient and precise analysis of heavy-tailed or partially corrupted
data [ENK16; WPL15; Sze+14]. Compared to earlier works in this area pioneered by Tukey and
McLaughlin [TM63] and Huber [Hub64; Hub65], modern treatment of this topic focuses more on
handling multivariate data. For instance, in the area of robust mean estimation, Diakonikolas,
Kane, and Pensia [DKP20], Lugosi and Mendelson [LM21], Depersin and Lecué [DL22], and Mi-
nasyan and Zhivotovskiy [MZ23] have proposed various extensions of univariate robust mean
procedures such as the trimmed mean estimator [TM63] and median of means estimator [NY83;
JVV86; AMS96] to the multivariate setting. We witness a similar surge in research interest in the
area of robust covariance estimation [MZ20; AZ22; MZ23].

In this work, we focus on the topic of robust linear regression with potentially multivariate
response variable, where a covariate-response pair (X, Y ) ∈ Rp × Rd with joint distribution
P (X,Y ) is generated from

Y = b∗X + ε, (2.1)

with regression coefficients b∗ ∈ Rd×p, a zero-mean covariate vector X ∈ Rp and a noise vector
ε taking values in Rd independent of X . Given independent and identically distributed (i.i.d.)
covariate-response pairs (X1, Y1), . . . (Xn, Yn) drawn from P (X,Y ), our goal is to estimate b∗. The
contamination of a linear model is mainly captured by two different mechanisms: heavy-tailed
noise [Cat12; LM19] and outlier contamination [Sze+14; Hub04]. When d = 1, both directions
have thrived in recent years [NT13; FLW17; SZF20; SF20; PJL20; Ado+23]. However, in the con-
text of multiple-output linear regression, where d > 1, the literature is notably scant. In this work,
we go beyond the case of the univariate response variable to the case of the multiple-output linear
model under possibly heavy-tailed noise.

One popular way to tackle the heavy-tailed error is based on the quantile regression [KB78;
WLJ07; LZ08; ZY08; WL09; BC11]. In the case of univariate linear regression, although the or-
dinary least square (OLS) estimator is widely recognized as the best unbiased estimator when
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the random error follows a Gaussian distribution since it attains the Cramer–Rao lower bound,
it may not perform well when the random error is heavy-tailed, as the mean squared error of
the OLS estimator is proportional to the second moment of the random error term. This issue
can be addressed by using the quantile regression estimator [KB78]. Unlike the OLS estimator,
which estimates the conditional mean function, the quantile regression estimator aims to esti-
mate the conditional quantile function of Y given X . Thanks to the robustness of quantiles, the
quantile regression estimator is less affected by outliers or heavy-tailed distributions. However,
the relative efficiency of the quantile regression estimator compared to the OLS estimator, i.e.
the asymptotic variance of OLS estimator to that of the CQR estimator, can be arbitrarily small
based on their respective asymptotic variances. Zou and Yuan [ZY08] proposed a solution to this
issue through the composite quantile regression (CQR) method, whose loss function aggregates
multiple quantile regression loss functions. Specifically, for d = 1 and any K ∈ N, the CQR
estimator b̃ is obtained by the following optimization problem

(q̂1, . . . , q̂K , b̃) = argmin
q1,...,qK∈R, b∈Rd×p

n∑
i=1

K∑
k=1

ρτk(Yi − bXi − qk), (2.2)

where ρτ (t) is the so-called check function defined as ρτ (t) = max{t, 0} + (τ − 1)t for any
t ∈ R, and τk = k/(K +1). Zou and Yuan [ZY08] showed that the CQR estimator can achieve at
least 70% relative efficiency compared to the OLS estimator even for Gaussian noise. However,
when d ≥ 2, the CQR estimator b̃ does not have a natural extension due to the lack of a proper
definition for multivariate rank/quantile and the corresponding multivariate check function.

One of the key contributions of this study is the development of a multiple-output composite
quantile regression (MCQR) estimator. The definition of our proposed estimator is closely related
to the concept of the Monge–Kantorovich (MK) ranks/quantiles, which are multivariate gener-
alization of ranks and quantiles from the view of optimal transport developed by Chernozhukov
et al. [Che+17] and Hallin et al. [Hal+21]. Intuitively, the univariate cumulative distribution
function (CDF) and the quantile function of any probability distribution PX can be viewed as
optimal transport maps between PX and a reference distribution, e.g. the uniform distribution
U [0, 1]. This perspective allows for a natural extension of ranks and quantiles to multivariate
distributions. Compared to many previous extensions based on Tukey’s depth [Tuk75], MK-
ranks/quantiles have several advantages, including the ability to capture more complex and possi-
bly non-convex quantile contours and allowing for distribution-free inference in multivariate set-
tings. Please refer to Hallin [Hal22] for a comprehensive introduction to the MK-ranks/quantiles.

A crucial observation in constructing our MCQR estimation is that the univariate CQR loss
function can be equivalently described as the Wasserstein product between the empirical distri-
bution of the residuals (Yi − bXi : i = 1, . . . , n) and the uniform distribution U [0, 1]. Here, the
‘Wasserstein product’ between two distributionsP andQ is the maximum ofE(XY ) over all cou-
plings (X, Y ) with marginal distributions X ∼ P and Y ∼ Q. When Q is viewed as a reference
distribution, this optimal coupling is exactly the same as in MK-quantiles. See (2.4) for a formal
definition and more detailed discussion. This alternative viewpoint allows us to circumvent the
need of defining individual multivariate check functions and instead formulate the MCQR loss
in terms of the MK-quantiles. It is worthwhile to note that while various previous studies in
the literature have attempted to extend the concept of quantile regression to the multiple-output
setting [HPŠ10; KM12a; Hal+15; CCG16; BSH24], the majority have concentrated on estimating
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the quantile contours rather than focusing on the robust estimation of the regression coefficients.
See Section 2.2 for a more detailed discussion of our proposed method.

Then in Section 2.3 we investigate the theoretical guarantees of the MCQR estimator. We
first prove the consistency result when the random noise is only assumed to have finite ℓ-th
moment for some ℓ > 2 (see Theorem 2.1). Then a faster convergence rate is established when we
assume a noise distribution with a sub-Weibull tail (see Theorem 2.2). We highlight that the MCQR
procedure represents an M-estimation problem incorporating the Wasserstein distance within its
loss function, for which the empirical process theory tools used in traditional M-estimators are
not directly applicable. To the best of our knowledge, Theorem 2.1 and Theorem 2.2 are the first
results that establish the consistency and convergence rate of an M-estimation where the loss
function involves the 2-Wasserstein distance. New theoretical tools were developed along the
way, which we believe may be of independent interest in future research. Please refer to Section
2.3 for detailed descriptions of the Theorems and proof sketches.

2.1.1 Related works

Various definitions of multiple-output quantile regression have been proposed in the past, in-
cluding the depth-based directional method [HPŠ10; KM12a; Hal+15], the M-quantile [Kol97],
the spatial quantile [Cha96; CC14], among others. As remarked above, unlike our work, all these
approaches focus on estimating the quantile contours of the response variable. In addition, these
definition of multivariate quantiles do not preserve the quintessential attributes of the univariate
quantile, notably distribution-freeness and the Glivenko-Cantelli property [Hal+21]. Further-
more, their quantile contours are constrained to be convex, which hinders performance when
data distribution exhibits non-convex level sets.

In contrast, Chernozhukov et al. [Che+17] and Hallin et al. [Hal+21] introduced a novel
multivariate quantile/rank framework based on optimal transport. This framework adeptly cap-
tures level set non-convexities while retaining the distribution-freeness and the Glivenko-Cantelli
property, hallmarks of the univariate rank/quantile [Che+17; Hal+21]. Several applications in
multivariate statistics have been established successfully [DS21; BSH24; HHH23; Shi+24]. We
refer to a comprehensive survey [Hal22] and references therein. Building upon this groundwork,
Carlier, Chernozhukov, and Galichon [CCG16] and Barrio, Sanz, and Hallin [BSH24] proposed
two notions of multiple-output quantile regression, though concentrating primarily on the esti-
mation of conditional quantile functions rather than the regression coefficients themselves.

2.1.2 Notation

For n ∈ N, write [n] := {1, . . . , n}. For any vector v ∈ Rd, we write ∥v∥ := (
∑

j∈[d] v
2
j )

1/2.
For any matrix M ∈ Rp×d, we define ∥M∥F :=

(
Tr

(
M⊤M

))1/2. We denote Sd−1 to be the unit
sphere in Rd. For any measurable function f : X → R, we denote f+(x) := max{f(x), 0} as
its positive part, and f−(x) := max{−f(x), 0} as its negative part. We write B as the Borel σ-
algebra ofRd. Write Pℓ(Rd) as the set of Borel probability measures defined on (Rd,B) with finite
ℓ-th order moments for ℓ ∈ N and Pac(Rd) be the set of probability measures on the same space
that are absolutely continuous with respect to the Lebesgue measure. For any random variableX
on Rd, write PX for the associated probability measure and PX

n := 1
n

∑n
i=1 δXi

for the associated
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empirical distribution where X1, . . . , Xn are n independent copies of X and δx denote the Dirac
measure on x.

2.2 MCQR

In this section, we present a generalization of the traditional CQR when the dimension of the
response variable d is greater than 1. We start by revisiting the univariate CQR estimator, and
showing that at the population level, it can be seen as the minimizer of the Wasserstein prod-
uct between P Y−bX and the uniform reference distribution U [0, 1], which allows a multivariate
generalization. Moreover, we justify that the choice of the reference distribution does not af-
fect the population minimizer in this problem, thus allowing us to select more natural reference
distributions in multivariate settings.

2.2.1 Univariate CQR revisited
Since q1, . . . , qK in (2.2) have the interpretation of quantiles associated with τ1, . . . , τK , it is nat-
ural to further constrain the optimization by assuming q1 ≤ · · · ≤ qK . Let M denote the set
of all increasing functions on R, then (2.2) with this additional constraint can be viewed as the
empirical version of the following optimization problem

argmin
q∈M, b∈R1×p

E
{
ρT

(
Y − bX − q(T )

)}
= argmin

q∈M, b∈R1×p

E
{∫ 1

0

ρτ
(
Y − bX − q(τ)

)
dτ

}
, (2.3)

where (X, Y ) ∼ P (X,Y ) and T ∼ U [0, 1]. The following lemma indicates that, when d = 1, the
true regression coefficient b∗ in (2.1) and the quantile function q∗ε : τ 7→ inf{y ∈ R : P ε(−∞, y] ≥
τ} of ε form a solution of (2.3). As we will see from Lemma 2.2 and Proposition 2.1, this is actually
the unique solution to the problem.

Lemma 2.1. Under the linear model (2.1), we have

(b∗, q∗ε) ∈ argmin
b∈R1×p, q∈M

E
∫ 1

0

ρτ (Y − bX − q(τ)) dτ.

In fact, an inspection of the proof (see Section 2.5.3) of the above lemma reveals that if
τ1, . . . , τK converges to a distribution PZ with support Z rather than to U [0, 1], then a simi-
lar result to Lemma 2.1 holds provided that we modify the convex check functions ρτ : R → R+

for τ ∈ Z so that they satisfy F−1
W ◦ FZ(τ) ∈ argminθ E ρτ (W − θ) for all random variables W

with absolutely continuous distributions. However, generalizing the check functions beyond the
univariate setting is difficult. While some attempts have been made [Cha96; Kol97], the resulting
multivariate quantiles, defined through the minimizer of these generalized check functions, lack
key properties of their univariate counterparts (see our discussion in Section 2.1.1, as well as em-
pirical comparisons in Section 2.4). Instead, our work takes a different approach and generalizes
the CQR population loss function as a whole rather than individual check functions. A key obser-
vation that allows us to achieve this is the following reformulation of the loss function of (2.3) in
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Lemma 2.2 below. To state the lemma, we define the Wasserstein product between P,Q ∈ P2(Rd)
as

⟨⟨P,Q⟩⟩W2 := sup
γ∈C(P,Q)

∫
⟨x, y⟩ dγ(x, y), (2.4)

where C(P,Q) denotes the set of all couplings between P and Q, i.e. for any γ ∈ C(P,Q), and
measureable subsets A, B ⊂ Rd, we have γ(A×Rd) = P (A) and γ(Rd×B) = Q(B). The name
‘Wasserstein product’ stems from its intrinsic link with the 2-Wasserstein distance: 1

2
W2

2 (P,Q) =
1
2

∫
∥x∥2 dP (x) + 1

2

∫
∥y∥2 dQ(y) − ⟨⟨P,Q⟩⟩W2 . We will often slightly abuse notation to write

⟨⟨X, Y ⟩⟩W2 instead of ⟨⟨PX , P Y ⟩⟩W2 .

Lemma 2.2. Suppose that X ∼ PX is mean-zero with finite second moment. For U ∼ U [0, 1], and
a fixed b ∈ R1×p, we have

inf
q∈M

E
{∫ 1

0

ρτ
(
Y − bX − q(τ)

)
dτ

}
+

1

2
EY = ⟨⟨Y − bX, U⟩⟩W2 .

The proof is deferred to Section 2.5.4. Writing L(b;U) := ⟨⟨Y − bX, U⟩⟩W2 , Lemma 2.2 and
Equation (2.3) imply that, the optimizer in b for the population CQR loss function in (2.3) is equal
to argminb∈Rd×p L(b;U) when d = 1.

2.2.2 Multiple-output CQR via optimal transport
With the help of Lemma 2.2, we may regardL(b;U) as a generalized population CQR loss function
for the multiple-output case (d ≥ 2) for suitably chosen reference random vectorU . The following
proposition (see Section 2.5.5 for proof) verifies that under a mild condition this loss has a unique
minimizer and that is independent of the specific choice of U (see Section 2.7 for an intuitive
illustration).

Proposition 2.1. If P ε, PU ∈ P2(Rd)∩Pac(Rd) and PX is not a point mass, then b∗ is the unique
minimizer of L(b;U).

There are various choices of the reference distribution ofU , including the uniform distribution
on the unit cube [Che+17; DS21] and the spherical uniform distribution [Hal+21; BSH24]. In this
paper, we opt for the standard multivariate normal distribution as the reference distribution,
primarily motivated by its advantageous theoretical characteristics. Moreover, we will also omit
the specification of the reference distribution in the loss function and simply write it as L(b)
throughout the rest of the paper.

Proposition 2.1 motivates the following natural estimator of b∗ based on the Wasserstein prod-
uct of the empirical distributions.

Definition 2.1. Given i.i.d. covariate-response pairs (X1, Y1), . . . , (Xn, Yn) generated as in (2.1)
and a reference distributionPU ∈ P2(Rd)∩Pac(Rd) andU1, . . . , Um

i.i.d.∼ PU , the MCQR estimator
for b∗ is defined as

b̂ ∈ argmin
b∈Rd×p

Ln,m(b), where Ln,m(b) := ⟨⟨P Y−bX
n , PU

m⟩⟩W2 . (2.5)
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The optimization procedure above is an M-estimation problem. However, unlike classical M-
estimation problems, the empirical loss function cannot be viewed as an empirical process of
the population loss (in fact, E⟨⟨P Y−bX

n , PU
m⟩⟩W2 ̸= ⟨⟨P Y−bX , PU⟩⟩W2), which prevents us from

applying traditional empirical process theory techniques to obtain the convergence rate results
directly. Instead, a collection of new theoretical results is developed to better understand both
the population and empirical version of the Wasserstein product loss. Please refer to Section
2.3 for more details. Secondly, it is worth noting that the empirical reference distribution PU

m is
distinct from the distribution of τk’s in (2.2) when d = 1. Instead, we employ it as the reference
distribution to redefine the distribution function and the quantile function (refer to Section 2.7 for
an example). Thus, even when d = 1 with a uniform reference distribution, the plug-in estimator
in (2.5) does not reduce to the univariate CQR estimator (2.2). This can also be seen from the proof
of Lemma 2.2. Therefore, our proposed MCQR estimator (2.5) is different from the univariate CQR
estimator that is studied in [ZY08] but shares the same loss function at the population level. See
also Figure 2.3a and Figure 2.3b for an interesting difference in their robustness to contamination
in one dimension.

2.2.3 Solving MCQR via linear programming
We describe here how the optimization problem can be solved in practice. Given {(Xi, Yi)}ni=1 ⊂
Rp × Rd and {Ui}mi=1, we define X = (X1, . . . , Xn)

⊤ ∈ Rn×p and Y = (Y1, . . . , Yn)
⊤ ∈ Rn×d

and U = (U1, . . . , Um)
⊤ ∈ Rm×d. Define

Cn,m = {A ∈ Rm×n
+ : A1n = 1m/m and A⊤1m = 1n/n}.

Every π ∈ Cn,m represents a coupling of P (X,Y )
n and PU

m in the sense that πi,j denotes the mass to
be transported from (Xi, Yi) to Uj . Then by the definition of ⟨⟨·, ·⟩⟩W2 , the optimization problem
in (2.5) can be written as

min
b∈Rd×p

max
π∈Cn,m

Tr
(
U⊤π(Y −Xb⊤)

)
= max

π∈Cn,m

min
b∈Rd×p

Tr
(
U⊤π(Y −Xb⊤)

)
= max

π∈Cn,m

min
b∈Rd×p

{
Tr

(
U⊤πY

)
− Tr

(
U⊤πXb⊤

)}
,

where the exchange of the minimum and maximum is allowed as the objective is linear [Neu28].
The dual formulation on the right-hand side is easier to handle since its inner minimum is equal
to −∞ unless U⊤πX = 0. Hence, the dual problem of (2.5) is

max
π∈Cn,m

Tr
(
U⊤πY

)
s.t. U⊤πX = 0,

which can be solved by standard linear programming solvers. After obtaining the dual optimizer
π̂, the MCQR estimator b̂ is obtained via complementary slackness.

2.3 Theory
In this section, we investigate the theoretical performance of the proposed estimator when adopt-
ing a standard Gaussian reference distribution U ∼ N (0, Id). In Theorem 2.1, we provide a non-
asymptotic bound for the estimation error when only assuming a finite 2 + δ moment condition
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on the random noise term. Furthermore, we demonstrate in Theorem 2.2 that in cases where the
distributions of both the covariates and the noise exhibit a sub-Weibull tail, the MCQR estimator
enjoys a faster rate of convergence to the truth.

Given a positive definite matrix Σ ∈ Rp×p and any matrix A ∈ Rd×p, we define the matrix
Mahalanobis norm ofAwith respect toΣ as ∥A∥Σ := Tr1/2(AΣA⊤) = ∥AΣ1/2∥F. We will assume
throughout this section that E(XX⊤) = Σ.

Assumption 1 X follows an elliptical distribution, i.e., there exists independent random variable
R onR+ and random vectorQ ∼ U(Sd−1) such thatX = Σ1/2QR, andP ε is absolutely continuous.

Under this assumption, we first consider the case when the random noise ε is only assumed
to satisfy a finite moment condition.

Theorem 2.1. Suppose (X, Y ), (X1, Y1), . . . , (Xn, Yn) are i.i.d. pairs generated according to (2.1),
U1, . . . , Um

i.i.d.∼ N (0, Id). Assume m ≥ n > 1 and that Assumption 1 holds. If PX , P ε ∈ Pℓ(Rd)
for ℓ > 2 then there exists C > 0 depending only on ℓ, d and p such that with probability at least
1− 4(log n)−1, the MCQR estimator defined in (2.5) satisfies

∥b̂− b∗∥2Σ ∧ 1 ≤ C
(
n− 1

4 + n− 1
d∨p + n− ℓ−2

2ℓ

)
logm.

An immediate consequence of Theorem 2.1 is that if taking n and m to be large enough such
that

C
(
n− 1

4 + n− 1
d∨p + n− ℓ−2

2ℓ

)
logm < 1, (2.6)

then we have

∥b̂− b∗∥2Σ ≤ C
(
n− 1

4 + n− 1
d∨p + n− ℓ−2

2ℓ

)
logm (2.7)

holds with probability at least 1− 4(log n)−1. We make a few remarks here. Firstly, to the best of
our knowledge, this is the first consistency result for an M-estimator whose loss function involves
a multivariate 2-Wasserstein distance term. Bernton et al. [Ber+19] studied the convergence rate
and asymptotic distribution of a minimum Wasserstein estimator, but their result is restricted to
1-Wasserstein distance in the univariate setting, for which explicit characterization of the optimal
transport is available. In our setting, the traditional M-estimator/Z-estimator argument [VW96,
Chapter 3.2-3.3] that derives consistency and rate of convergence of an M-estimator by analyzing
the curvature of the loss function is infeasible. Instead, our proof relies on several new lemmas
that reveal important properties of the Wasserstein product.

To briefly sketch the proof of Theorem 2.1, we first introduce the following lemmas.

Lemma 2.3. Let Z and ε be independent random vectors in Rd and U ∼ N (0, Id). If P ε and PZ

are absolutely continuous with finite second moments, then

⟨⟨Z + ε, U⟩⟩2W2
≥ ⟨⟨Z,U⟩⟩2W2

+ ⟨⟨ε, U⟩⟩2W2
.

This lemma is proved by constructing a sequence of couplings of the triple (Z, ε, U) via the
Slepian smart path interpolation [see e.g. Ver18, Chapter 7.2.1]. The best induced coupling of
(Z + ε, U) provides the desired lower bound of ⟨⟨Z + ε, U⟩⟩W2 . See Section 2.5.7 for the proof.
We remark that the lower bound in Lemma 2.3 is sharp, as can be seen from Lemma 2.13.
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(a) The upper and lower bound constructed in the
Proof of Theorem 2.1.

(b) The upper and lower bound constructed in the
proof of Theorem 2.2.

Figure 2.1: Illustration of proofs.

Lemma 2.4. Let X1, X2, Y1, Y2 be random elements taking values in a normed space (X , ∥ · ∥).
Then we have∣∣⟨⟨X1, X2⟩⟩W2 − ⟨⟨Y1, Y2⟩⟩W2

∣∣ ≤ (
E ∥Y2∥2

)1/2W2(P
X1 , P Y1) +

(
E ∥X1∥2

)1/2W2(P
X2 , P Y2).

This lemma links W2(P
X1 , PX2), W2(P

Y1 , P Y2) with W2(P
X1 , P Y1), W2(P

X2 , P Y2). This is
useful when transforming a two-sample problem into two one-sample problems. Please refer to
Section 2.5.8 for the proof.
Proof sketch of Theorem 2.1. We start with the basic inequality:

L(b̂)− L(b∗) ≤ L(b̂)− Ln,m(b̂) + Ln,m(b∗)− L(b∗). (2.8)

The proof strategy involves establishing a lower bound for the left-hand side of (2.8) with respect
to ∥b̂− b∗∥Σ and an upper bound for the right-hand side of (2.8) in terms of ∥b̂− b∗∥Σ. Then by
solving the resulting inequality, we can derive an expression bounding ∥b̂− b∗∥Σ.

For a lower bound of the left-hand side of (2.8), since for any b ∈ Rd×p, we have L(b) −
L(b∗) = ⟨⟨(b∗ − b)X + ε, U⟩⟩W2 − ⟨⟨ε, U⟩⟩W2 , by applying Lemma 2.3 and the explicit form for
⟨⟨(b∗ − b)X,U⟩⟩W2 we can show that

L(b)− L(b∗) ≥
√
r2 + ∥b∗ − b∥2Σ − r, (2.9)

where r := ⟨⟨ε, U⟩⟩W2 is a constant. This lower bound grows quadratically in ∥b̂ − b∗∥Σ when
∥b̂− b∗∥Σ is close to zero and linearly when ∥b̂− b∗∥Σ is large (see Figure 2.1a for an illustration).

To upper bound the right-hand side of (2.8), by applying Lemma 2.4 we have for each b ∈ Rd×p,

|L(b)− Ln,m(b)| ≤
(

1

m

m∑
i=1

∥Ui∥2
)1/2

W2(P
Y−bX , P Y−bX

n )+ (E ∥Y − bX∥2)1/2W2(P
U , PU

m).

(2.10)

Here W2(P
Y−bX , P Y−bX

n ) and W2(P
U , PU

m) are one-sample empirical Wasserstein distance, and
the state-of-art convergence rate can be applied [see e.g. FG15] (the actual proof is more involved
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in the sense that we need to establish the same result uniformly over b). Then a direct calculation
on the right-hand side of (2.10) leads to a quadratic upper bound in terms of ∥b∗− b∥Σ. The result
follows by combining the upper bound with the lower bound (2.9). See Section 2.5.6 for the proof.
□

Before we state a faster convergence rate result, we first introduce the following assumptions.

Assumption 2 For some σ1, σ2 > 0 and α, β ∈ (0, 2], it holds that the distribution of Σ−1/2X is
(σ1, α)-sub-Weibull and P ε is (σ2, β)-sub-Weibull, in the sense that

E exp

{
1

2
(∥Σ−1/2X∥/σ1)α

}
≤ 2 and E exp

{
1

2
(∥ε∥/σ2)β

}
≤ 2 (2.11)

Assumption 3 For some γ1, γ2 > 0, the density function of ε, write as fε, satisfies the following
anti-concentration property

fε(e) ≥ γ1 exp
{
(−γ2∥e∥2)

}
, for ∥e∥ ≥ 1. (2.12)

On the one hand, Assumption 3 immediately implies the following anti-concentration bound

P(∥ε∥ ≥ r) ≥
πd/2

(
(r + 1)d − rd

)
Γ(d

2
+ 1)

γ1 exp
(
−2γ2r

2 − 2γ2
)
, for r ≥ 1.

This indicates that the random noise ε possesses a heavier tail than the sub-gaussian tail outside
the unit ball. On the other hand, by proposition 2.5(i), the sub-Weibull assumption implies that
P(∥ε∥ ≥ r) ≤ 2e−

1
2
(r/σ2)β . The anti-concentration condition in (2.12) is a relaxation of the so-

called (γ1, γ2)-regularity defined in [PW16]. The merit of employing this relaxation becomes
apparent when examining Lemma 2.15, where it is demonstrated that the convolution of two
independent probability densities adhering to (2.12) continues to satisfy the anti-concentration
inequality. In contrast, the convolution of two independent regular densities may not be regular.

Equipped with these assumptions, we are ready to state an improved convergence rate.

Theorem 2.2. Under the same setup of Theorem 2.1 and suppose that Assumptions 2 and 3 are sat-
isfied. Form,n large enough such that (2.6) is satisfied, there exists some constantM > 0 depending
only on d, α, β, σ1, σ2, γ1, γ2 such that with probability at least 1− 33(log n)−1, we have

∥b∗ − b̂∥2Σ ≤M
(
(p/n)1/2 + n−2/d

)
(logm)

8
2∧α∧β . (2.13)

When d > 4, up to a factor of the logarithm, the empirical Wasserstein distance estimation
error n−2/d is the dominant term. This is derived from a uniform empirical Wasserstein distance
control (see (2.14) and Proposition 2.4), and its minimax optimality has been established in [SP18].
Compared to (2.7), this improved bound in (2.13) removes the dependence on p in the exponent.
Moreover, unlike the convergence rate result established for the projected Wasserstein distance
in Wang, Gao, and Xie [WGX21; WGX22], our argument does not require the distribution of ε to
have compact support. When d ≤ 4, the parametric rate (p/n)1/2 dominates the estimation error.
However, this does not translate into a the root-n consistency even when d = 1. We conjecture
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that this is likely due to an artifact of our proof. Specifically, due to a lack of effective tools to
analyze the curvation of the loss function that incorporates the Wasserstein distance, we were
unable to obtain concentration results for ∂

∂b
(L(b)− Ln,m(b)) uniformly over b in a similar way

that we have done for L(b)−Ln,m(b). Exploration along this direction remains an area for future
work. We briefly sketch the proof below. See Section 2.5.9 for a complete proof.
Proof sketch of Theorem 2.2. Assume the setting of Theomem 2.1, error bound (2.7) implies
that on a high probability event, b̂ will lie in a bounded ball centered at b∗, denoted by B. Thus
the basic inequality (2.8) indicates the following uniform bound

L(b̂)− L(b∗) ≤ 2 sup
b∈B

|L(b)− Ln,m(b)|

≤
∣∣∣ 1
m

m∑
i=1

∥Ui∥2 − E ∥U∥2
∣∣∣+ sup

b∈B

∣∣∣ 1
n

n∑
i=1

∥Yi − bXi∥2 − E ∥Y − bX∥2
∣∣∣

+ sup
b∈B

∣∣∣W2
2 (P

Y−bX , PU)−W2
2 (P

Y−bX
n , PU

m)
∣∣∣. (2.14)

Utilizing the same lower bound for the left-hand side as in (2.9), it remains to derive an upper
bound for the right-hand side of the above inequality. While the initial two terms of (2.14) can
be effectively controlled through the application of statistical concentration arguments, as eluci-
dated in Lemma 2.11, achieving control over the last term demands much more effort. Motivated
by the duality argument presented in Manole and Niles-Weed [MN24, Theorem 13], we establish
a non-asymptotic uniform error bound for the empirical 2-Wasserstein distance (Proposition 2.4;
see also Figure 2.1b for an illustration), which forms the key ingredient of the proof. □

2.4 Simulations
In this section, we compare the empirical performance of MCQR with other robust regression
estimators. The MCQR estimator is obtained by solving the linear programming problem in Sec-
tion 2.2.3. The competitors used in the simulation studies include the ordinary least squares esti-
mator (LS), the spatial quantile regression (SpQR) with zero quantile level [Cha96], and coordinate-
wise CQR (CoorCQR), i.e. independently applying CQR to each component of the response vari-
able. We refer readers to Section 2.8 for more details about SpQR.

In each experiment, we draw i.i.d. data (X1, Y1), . . . , (Xn, Yn) according to model (2.1), where
the regression coefficients b∗ ∈ Rd×p has independent N (5, 5) entries and is kept fixed for all
repetitions. CovariatesXi ∈ Rp, i = 1, . . . , n, are drawn fromN(0,Σ) with a Toeplitz covariance
matrix Σ = (2−|i−j|)i,j ∈ Rp×p. The noise ε is generated from one of the following distributions:

(1a) ε ∼ N (0, Id)
(1b) ε ∼ t2(0, Id) follows a multivariate t2 distribution
(1c) ε has each marginal distributed with Pareto(−2, 2, 1) 1 and the same copula as N (0,Σ′),

where Σ′ = (0.9|i−j|)i,j ∈ Rd×d

(1d) ε follows a centered Banana-shaped distribution, i.e. εi
d
= (Bd−1, ∥Bd−1∥2 − 2

d+2
) + 0.3Bd,

where Bd is uniformly distributed in the unit ball in Rd

1the Pareto distribution Pareto(k, α, s) has density function f(x) ∝ αsα+1

(x−k)α+1 for all x ≥ 1 + k, with shape
parameter α > 0, location parameter k ∈ R and scale parameter s > 0. Here Pareto(−2, 2, 1) has mean 0.
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(a) Gaussian noise (b) Multivariate t2 noise

(c) Pareto copula noise (d) Banana-shaped noise

Figure 2.2: Logarithmic average loss, measured in matrix Mahalanobis norm, of the regression
coefficient estimated by MCQR, CoorCQR, SpQR and LS for data generated according to the
mechanism described in Section 2.4 for various sample size n, covariate dimension p and response
dimension d and four different noise distributions (panels (a) to (d)).
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Figure 2.2 reports the average matrix Mahalanobis norm error (estimated over 100 Monte
Carlo repetitions) of MCQR, LS, SpQR and CoorCQR over the four noise distributions mentioned
above for n ∈ {100, 200, . . . , 600} and (d, p) ∈ {(2, 7), (4, 10)}. We see that MCQR has done
well over all settings considered here. In contrast, LS estimator performs the best under Gaussian
noise but has poor performance under heavy-tailed noise or noise with non-convex support.
CoorCQR and SpQR have relatively good performance in panels (a) and (b) when the noise is
spherically symmetric but their performance deteriorated when the noise exhibits strong cross-
sectional dependence in panels (c) and (d).

While our theoretical results have mostly concerned with heavy-tailed noise, we also inves-
tigate the empirical performance of MCQR in the presence of outlier contamination. Here, we
consider two cases of ϵ-contaminated noise, for some ϵ ∈ (0, 1):

(2a) ε ∼ (1 − ϵ)P1 + ϵP2; here P1 is a Pareto copula with Pareto(−10
9
, 10, 1) marginals and

copula generated by N (0,Σ′) as in case (1c) and P2 is a heavier-tailed location-shifted
Pareto copula with marginals distributed as Pareto(10, 2, 10).

(2b) ε ∼ (1− ϵ)N (0, Id) + ϵN (100, Id)

(a) Pareto contamination (b) Gaussian contamination

Figure 2.3: Logarithmic average estimation loss, measured in matrix Mahalanobis norm, of the
regression coefficient estimated by MCQR, CoorCQR, SpQR and LS for data generated according
to the mechanism described in Section 2.4 for various outlier contamination proportion (from 0.05
to 0.5), covariate dimension p and response dimension d and two different noise contamination
models. We fix n = 200.

Figure 2.3 shows the performance of the four procedures for increasing levels of contamina-
tion proportion ϵ. We observe that MCQR is generally more robust than other competitors when
we add additional outliers to the random error. Interestingly, we see that in the case where d = 1,
the CoorCQR, which reduces to the univariate CQR, shows a lack of robustness against the out-
lier contamination, while the 1-dimensional version of MCQR maintains its robustness even with
a high proportion of contamination.
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2.5 Proofs
We first record here some notations and several classical results on optimal transport theory that
will be used throughout our theoretical analysis.

2.5.1 Preliminaries on optimal transport theory

Define the rescaled squared ℓ2-distance as L2(x, y) := 1
2
∥x − y∥2 for any x, y ∈ Rd. In this

notation, for two distributions P and Q on Rd, we have

1

2
W2

2 (P,Q) = inf
γ∈C(P,Q)

∫
L2(x, y)dγ(x, y) =: I2(P,Q). (2.15)

Our proof depends on the following Kantorovich duality [see e.g., Vil21, Theorem 1.3]

I2(P,Q) = sup
φ,ψ∈Φ2

JP,Q(φ, ψ), (2.16)

where Φ2 := {(φ, ψ) ∈ L1(P )× L1(Q) : φ(x) + ψ(y) ≤ L2(x, y)} and

JP,Q(φ, ψ) :=

∫
φ(x)dP (x) +

∫
ψ(y)dQ(y).

By taking advantage of the particular form of L2, we also have for Φ̃ := {(φ, ψ) ∈ L1(P ) ×
L1(Q) : φ(x) + ψ(y) ≥ xTy} that∫

∥x∥2

2
dP (x) +

∫
∥y∥2

2
dQ(y)− sup

φ,ψ∈Φ2

JP,Q(φ, ψ) = inf
φ,ψ∈Φ̃

JP,Q(φ, ψ) := Ĩ2(P,Q). (2.17)

Thus solve the problem of (2.16) degenerates to solve the problem of Ĩ2(P,Q).
For any φ ∈ L1(P ), define its Legendre transform as φ∗(y) := supx∈Rd(xTy − φ(x)). Then

it can be shown that φ∗ is a convex lower semi-continuous (l.s.c.) function. This definition imme-
diately implies that for any (φ, ψ) ∈ Φ̃, ψ(y) ≥ φ∗(y), ∀y ∈ Rd. Thus we have JP,Q(φ, ψ) ≥
JP,Q(φ, φ

∗). Similarily, we have φ(x) ≥ supy∈Rd

(
xTy − φ∗(y)

)
= φ∗∗(x), ∀x ∈ Rd, which

further implies that JP,Q(φ, φ∗) ≥ JP,Q(φ
∗∗, φ∗). In the end, we deduced that

inf
φ,ψ∈Φ̃

JP,Q(φ, ψ) ≥ inf
φ∈L1(P )

JP,Q(φ
∗∗, φ∗) ≥ inf

φ is convex l.s.c.
JP,Q(φ

∗, φ).

In fact, it can be shown [see e.g. Vil21, Theorem 2.9] that the equality above holds, i.e. there exists
a convex l.s.c. function φ0 such that the conjugate pair (φ0, φ

∗
0) is the optimal solution to Ĩ2(P,Q).

Now we are ready to state a fundemental theorem for the optimal transport theory with L2 loss
function.

Theorem 2.3. [Vil21, Theorem 2.12 and Remark 2.13(iii)] Let P and Q be probability measures
on Rd, with finite second moment. We consider the Kantorovich dual problem associated with the
rescaled squared ℓ2-distance L2. Then γ ∈ C(P,Q) is optimal if and only if there exists a convex
l.s.c. function φ0 such that

Supp(γ) ⊂ ∂φ0,
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or equivalently, for γ-almost all (x, y),

y ∈ ∂φ0(x).

Moreover, there exists a conjugate pair (φ0, φ
∗
0) that is a minimizer of Ĩ2(P,Q). Thus (∥ · ∥2/2 −

φ0, ∥ · ∥2/2− φ∗
0) solves the Kantorovich dual problem I2(P,Q).

The 1-Wasserstein distance satisfies the following Kantorovich–Rubinstein duality.

Theorem 2.4 (Kantorovich–Rubinstein theorem). Suppose X is a subset of Rd, define the diameter
of X as diam(X ) := supx,y∈X ∥x− y∥. Let Lip(X ) denote the space of all Lipschitz function on X
and for any f within this space define

∥f∥Lip(X ) := max
{
sup
x,y∈X
x ̸=y

|f(x)− f(y)|
∥x− y∥

,
∥f∥∞

diam(X )

}
.

Then

W1(P,Q) = sup

{∫
f(x)dP (x)−

∫
f(y)dQ(y) : f ∈ L1(|P −Q|), f ∈ Lip1(X )

}
, (2.18)

where Lip1(X ) := {f : ∥f∥Lip(X ) ≤ 1}.

In particular, the 1-Wasserstein distance can be seen as a special case of a integral probability
metric (defined below) with respect to the Lip1 function class.

Definition 2.2 (Integral Probability Metrics). Given probability measures P andQ as before, the
integral probability metrics (IPMs) with respect to function class F is defined as

IPM(P,Q;F) = sup
f∈F

{∫
f(x)dP (x)−

∫
f(y)dQ(y)

}
. (2.19)

2.5.2 Additional notation
Suppose T is a map from a measurable spaceX , equipped with a measure µ, to an arbitrary space
Y , we denote by T#µ as the push-forward of µ by T . Specifically, (T#µ)(A) = µ(T−1(A)) for
any measurable set A.

Suppose X1, . . . , Xn are random samples from some probability distribution P . Then given
any function class F , define the Rademacher complexity of F as

Rn(F , P ) := E
(
sup
f∈F

1

n

n∑
i=1

ξif(Xi)
)
, (2.20)

where ξi’s are independent Rademacher random variables, independent from X1, . . . , Xn. The
p-dimensional closed ball in centered at x ∈ Rp with radius r > 0 is denoted by Bpx,r := {y ∈
Rp : ∥y∥ ≤ r} and we omit r when r = 1: Bpx,1 := Bpx. The matrix operator norm is denoted by
∥ · ∥op, so that ∥A∥op := supx:∥x∥=1 ∥Ax∥.
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2.5.3 Proof for Lemma 2.1
Proof. For any fixed τ ∈ (0, 1), by the definition of check function ρτ we have

qY (τ) ∈ argmin
θ

E ρτ (Y − θ),

where qY (·) is the quantile function of Y . Thus under the linear model (2.1) we have for any
x ∈ Rp,

(b∗, q∗ε(τ)) ∈ argmin
b∈R1×d,q∈R

E[ρτ (Y − bX − q) | X = x]. (2.21)

For any b ∈ R1×p and q ∈ R, define g(x; b, q) := E[ρτ (Y − bX − q) | X = x], then (2.21) implies
that

g(x; b∗, q∗ε(τ)) ≤ g(x; b, q),

thus ∫
Rp

g(x; b∗, q∗ε(τ)) dx ≤
∫
Rp

g(x; b, q) dx.

Then by the Fubini Theorem and the Law of iterated expectation, we have

E[ρτ (Y − b∗X − q∗ε(τ))] ≤ E[ρτ (Y − bX − q)]. (2.22)

Because the quantile function q∗ε ∈ M, thus (2.22) implies that for any q(·) ∈ M∫ 1

0

E[ρτ (Y − b∗X − q∗ε(τ))] dτ ≤
∫ 1

0

E[ρτ (Y − bX − q(τ))]dτ.

Therefore the result follows by applying the Fubini Theorem once again.

2.5.4 Proof for Lemma 2.2
Proof. Let C denote the class of convex functions on [0, 1]. By the definition of the check function
ρτ and the fact that X is mean-zero, we have

inf
q∈M

E
{∫ 1

0

ρτ
(
Y − bX − q(τ)

)
dτ

}
+

1

2
EY

= inf
q∈M

{
E
∫ 1

0

(Y − q(τ)− bX)+dτ +

∫ 1

0

(1− τ)q(τ)dτ
}

= inf
q∈M

{
E max
t∈[0,1]

∫ t

0

(Y − q(τ)− bX) dτ +

∫ 1

0

∫ 1

τ

q(τ) du dτ
}

= inf
ϕ∈C

{
E max
t∈[0,1]

(t(Y − bX)− ϕ(t)) + Eϕ(U)
}

= inf
ϕ∈C

E
{
ϕ∗(Y − bX) + Eϕ(U)

}
, (2.23)

where ϕ∗(t) := maxt∈[0,1]{ut − ϕ(u)} is the Legendre conjugate of ϕ : [0, 1] → R and we used
Fubini’s theorem and a change of variable q 7→ ϕ ∈ C defined by ϕ(t) =

∫ t
0
q(τ) dτ in the

penultimate step.
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Let ϕ0 be the optimizer of (2.23) and ϕ∗
0 its Legendre conjugate, then by Villani [Vil21, Theo-

rem 2.9], we have

Eϕ∗
0(Y − bX) + Eϕ0(U) = inf

ϕ∈C

{
Eϕ∗(Y − bX) + Eϕ(U)

}
= inf

ϕ,ψ∈C:ϕ(x)+ψ(y)≥xy

{
Eψ(Y − bX) + Eϕ(U)

}
.

Then by the arguments in Villani [Vil21, Sec 2.1.2], the pair (ϕ̃0, ψ̃0) defined by ϕ̃0(u) = u2/2−
ϕ0(u) and ψ̃0(y) = y2/2 − ϕ∗

0(y) is the optimizer of the Kantorovich dual formulation of the
optimal transport problem between P Y−bX and PU , i.e.

Eψ̃0(Y − bX) + Eϕ̃0(U) = sup
ϕ̃,ψ̃∈L1(R)

ϕ̃(x)+ψ̃(y)≤(x−y)2/2

Eψ̃(Y − bX) + Eϕ̃(U). (2.24)

By the strong duality theorem [Vil21, Theorem 1.3], we have

1

2
W2

2

(
P Y−bX , PU

)
= Eψ̃0(Y − bX) + Eϕ̃0(U)

= E
{
1

2
(Y − bX)2 − ϕ∗

0(Y − bX)

}
+ E

{
1

2
U2 − ϕ0(U)

}
, (2.25)

which together with the definition of ⟨⟨·, ·⟩⟩W2 implies that

⟨⟨P Y−bX , PU⟩⟩W2 = Eϕ∗
0(Y − bX) + Eϕ0(U).

The result follows by combining the above identity with the optimality of ϕ0 in (2.23).

2.5.5 Proof for Proposition 2.1

Proof. By Brenier’s Theorem, there is a unique (invertible) optimal transport map ϕ : Rd → Rd

from PU to P ε, which induces a coupling P (U,ε) := (ϕ ⊗ Id)#PU ∈ C(PU , P ε). Then P (U,ε) ⊗
P (b∗−b)X is a joint distribution of (U, ε, (b∗−b)X), which induces a joint distribution P (U,Y−bX) ∈
C(PU , P Y−bX) through the map (u, e, z) 7→ (u, e + z). Observe that the squared L2 transport
cost associated with P (U,Y−bX) is∫

∥u− v∥22 dP (U,Y−bX)(u, v) =

∫
∥u− (e+ z)∥22 d(P (U,ε) ⊗ P (b∗−b)X)(u, e, z)

=

∫
∥ϕ(u)− u∥22 dPU(u) +

∫
∥z∥22 dP (b∗−b)X(z)

= W2
2 (P

U , P ε) + E ∥(b∗ − b)X∥22. (2.26)

Therefore, we have

L(b;U)− L(b∗;U) = −W2
2 (P

U , P Y−bX) +W2
2 (P

U , P ε) + E ∥(b∗ − b)X∥22

=

∫
∥u− v∥22 dP (U,Y−bX)(u, v)− inf

Q∈C(PU ,PY −bX)

∫
∥u− v∥22 dQ(u, v) ≥ 0.

(2.27)
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This implies that b∗ ∈ argminL(b;U). To prove the uniqueness, by Brenier’s Theorem, since
PU ∈ Pac(Rd), the optimal transport map from PU to P Y−bX is unique, thus the equality can
only be achieved in (2.27) if P (U,Y−bX) is the optimal coupling. In such a case, by the Knott-
Smith optimality criterion [Vil21, Theorem 2.12(i)], there exists a unique convex lower semi-
continuous function h : Rd → Rd such that Supp(P (U,Y−bX)) ⊂ Graph(∇h) in the sense that,
for any (u, v) ∈ Supp(P (U,Y−bX)), we have v = ∇h(u). Define an event A = {∇h(ϕ−1(ε))) =
ε+ (b∗ − b)X}. Then

P(A) = P
(
(ϕ−1(ε), ε+ (b∗ − b)X) ∈ {(u, v) : ∇h(u) = v}

)
= P (U,Y−bX){(u, v) : ∇h(u) = v} = 1.

This implies that ε+(b∗− b)X = ∇h(ϕ−1(ε)) almost surely. Because X is independent of ε, and
is not a point mass, the only way to make this equality hold is when b = b∗ as desired.

2.5.6 Proof for Theorem 2.1

For notation simplicity, write S := Σ−1/2X and Si := Σ−1/2Xi for i ∈ [n] throughout the rest of
the paper.

Proof. By the definition of b̂ in (2.5), we have the following basic inequality:

L(b̂)− L(b∗) ≤ L(b̂)− Ln,m(b̂) + Ln,m(b∗)− L(b∗). (2.28)

By the explicit formula for the 2-Wasserstein distance between two elliptical distributions [see
Gel90, Theorem 2.1], we have

⟨⟨P (b∗−b)X , PU⟩⟩W2 =
1

2

{
E ∥(b∗ − b)X∥2 + E ∥U∥2 −W2

2 (P
(b∗−b)X , PU)

}
=

1

2

{
E ∥(b∗ − b)X∥2 + E ∥U∥2 −

∥∥((b∗ − b)Σ(b∗ − b)T
)1/2 − Id

∥∥2

F

}
= Tr

{(
(b∗ − b)Σ(b∗ − b)T

)1/2} (2.29)
≥ Tr1/2

{
(b∗ − b)Σ(b∗ − b)T

}
= ∥b∗ − b∥Σ. (2.30)

Hence, writing r := ⟨⟨P ε, PU⟩⟩W2 , we have by Lemma 2.3 that for any b ∈ Rd×p,

L(b)− L(b∗) = ⟨⟨P (b∗−b)X+ε, PU⟩⟩W2 − ⟨⟨P ε, PU⟩⟩W2

≥
√
r2 + ⟨⟨P (b∗−b)X , PU⟩⟩2W2

− r ≥
√
r2 + ∥b∗ − b∥2Σ − r. (2.31)

On the other hand, by Lemma 2.4, we have

|L(b)− Ln,m(b)| =
∣∣∣⟨⟨P Y−bX , PU⟩⟩W2 − ⟨⟨P Y−bX

n , PU
m⟩⟩W2

∣∣∣
≤ αmW2(P

Y−bX , P Y−bX
n ) + (E ∥Y − bX∥2)1/2W2(P

U , PU
m), (2.32)

where αm :=
(

1
m

∑m
i=1 ∥Ui∥2

)1/2. We control the two terms on the right-hand side of (2.32)
separately. For the first term, suppose P1 is the optimal coupling between P S and P S

n , and P2 is
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the optimal coupling between P ε and P ε
n . Since P1 ⊗P2 induces a coupling between P Y−bX and

P Y−bX
n through the relation Y − bX = (b∗ − b)Σ1/2S + ε, we have

W2
2 (P

Y−bX ,P Y−bX
n )

≤
∫

∥(b∗ − b)Σ1/2s1 + e1 − (b∗ − b)Σ1/2s2 − e2∥2d(P1 ⊗ P2)(s1, s2, e1, e2)

≤
∫

∥b∗ − b∥2Σ∥s1 − s2∥2dP1(s1, s2) +

∫
∥e1 − e2∥2dP2(e1, e2)

= ∥b∗ − b∥2ΣW2
2 (P

S, P S
n ) +W2

2 (P
ε, P ε

n).

Thus,

W2(P
Y−bX , P Y−bX

n ) ≤ ∥b∗ − b∥ΣW2(P
S, P S

n ) +W2(P
ε, P ε

n) =: In(∥b∗ − b∥Σ). (2.33)

For the second term on the right-hand side of (2.32), define s2 := E ∥ε∥2, we have

(E ∥Y − bX∥2)1/2 = (E ∥(b∗ − b)X + ε∥2)1/2 ≤ {2E∥(b∗ − b)X∥2 + 2E∥ε∥2}1/2

=
{
2∥b∗ − b∥2Σ + 2s2

}1/2
. (2.34)

Combining (2.32), (2.33) and (2.34), we obtain that

|L(b)− Ln,m(b)| ≤ αmIn(∥b∗ − b∥Σ) +
{
2∥b∗ − b∥2Σ + 2s2

}1/2W2(P
U , PU

m). (2.35)

Since (2.31) and (2.35) holds for arbitrary b ∈ Rd×p, we have by (2.28) that{
r2 + ∥b∗ − b̂∥2Σ

}1/2 − r ≤ αmIn(∥b∗ − b̂∥Σ) +
{
2∥b∗ − b̂∥2Σ + 2s2

}1/2W2(P
U , PU

m)

+ αmIn(0) + s
√
2W2(P

U , PU
m).

We apply Lemma 2.12 to the left-hand side of the above and combine with the fact that r2 ≤ s2d,
we deduce that for some constant C > 0 only depending on d, the following inequality holds:

(2∥b∗ − b̂∥Σ − 1) ∧ ∥b∗ − b̂∥2Σ
(∥b∗ − b̂∥Σ ∨ 1)

≤ C(2 + 2s)
(
αmW2(P

S, P S
n ) + (

√
2 + 2s

√
2)W2(P

U , PU
m) + 2αmW2(P

ε, P ε
n)
)
. (2.36)

Thus we only need to control the right-hand side of the above.
Note by Markov’s inequality, E(m)

0 := {αm ≤
√
d logm} holds with probability at least

1−(logm)−1. Similarily, by the convergence rate of empirical 2-Wasserstein distance in Theorem
2.5 implies that there exists constants C1 > 0 depending only on p and ℓ and C2, C3 > 0 depend-
ing only on d, ℓ such that for allm,n > 1, eventsE(n)

1 := {W2(P
S, P S

n ) ≤ C1τ
1/2
n (p, ℓ) log1/2 n},

E
(n)
2 := {W2(P

ε, P ε
n) ≤ C2τ

1/2
n (d, ℓ) log1/2 n} andE(m)

3 := {W2(P
U , PU

m) ≤ C3τ
1/2
m (d, ℓ) log1/2m}

hold with probability at least 1− (log n)−1, 1− (log n)−1, 1− (logm)−1, respectively. Therefore,
for all n > 1 and m > n, let E(n,m) := E

(m)
0

⋂
E

(n)
1

⋂
E

(n)
2

⋂
E

(m)
3 , we have P(E(n,m)) ≥

1− 4(log n)−1.
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Note

(2∥b∗ − b̂∥Σ − 1) ∧ ∥b∗ − b̂∥2Σ
(∥b∗ − b̂∥Σ ∨ 1)

≥ ∥b∗ − b̂∥2Σ ∧ 1.

Then combining this with (2.36), and working on the event E(n,m), there exists some constant
M̃ > 0 depending only on d, ℓ, p such that

∥b∗ − b̂∥2Σ ∧ 1 ≤ M̃(1 + s)
(
τ 1/2n (p, ℓ) + sτ 1/2n (d, ℓ)

)
log1/2m

≤ M̃
(
n−1/4 + n− 1

d∨p + n
2−ℓ
2ℓ

)
logm,

where a positive constant depending on d is absorbed in M̃ in the final inequality, while we stick
with notation M̃ for simplicity.

2.5.7 Proof for Lemma 2.3

Proof. By the Brenier’s Theorem [Vil09, Theorem 2.12 (ii)], there exists optimal transport maps
ϕ, ψ : Rd → Rd such that ϕ#P ε = PU and ψ#PZ = PU . Now, for any fixed t ∈ [0, 1], we
define Mt(z, e) :=

√
1− tψ(z) +

√
tϕ(e), for all z, e ∈ Rd. Since Mt(Z, ε)

d
= U , there exists a

coupling P (Z,ε,U) ∈ C(PZ ⊗ P ε, PU) whose associated transport map is Mt (more specifically,
P (Z,ε,U) = (Id⊗Mt)#(PZ ⊗ P ε)). Thus, we have

⟨⟨Z + ε, U⟩⟩W2 ≥
∫

⟨z + e, u⟩dP (Z,ε,U)(z, e, u)

=

∫ 〈
z + e,

√
1− tψ(z) +

√
tϕ(e)

〉
d(PZ ⊗ P ε)(z, e)

=
√
1− t

∫
⟨z, ψ(z)⟩dPZ(z) +

√
t

∫
⟨e, ϕ(e)⟩dP ε(e)

=
√
1− t⟨⟨Z,U⟩⟩W2 +

√
t⟨⟨ε, U⟩⟩W2 ,

where in the penultimate step we used the fact that ε is independent from Z . Now, taking t =
⟨⟨ε,U⟩⟩2W2

⟨⟨ε,U⟩⟩2W2
+⟨⟨Z,U⟩⟩2W2

, we have

⟨⟨Z + ε, U⟩⟩2W2
≥ ⟨⟨Z,U⟩⟩2W2

+ ⟨⟨ε, U⟩⟩2W2

as desired.

2.5.8 Proof for Lemma 2.4

Proof. Let X1,X2,Y1,Y2 denote four copies of X . By Lemma 2.5, there exists a distribution η on
X1 × X2 × Y1 × Y2 with marginals PX1 , PX2 , P Y1 , P Y2 , such that η|X1×X2 , η|X2×Y2 , η|X1×Y1 are
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optimal couplings between X1 and X2, X2 and Y2, and X1 and Y1 respectively. Then we have

⟨⟨X1, X2⟩⟩W2 − ⟨⟨Y1, Y2⟩⟩W2

= sup
µ∈C(PX1 ,PX2 )

∫
⟨x1, x2⟩ dµ(x1, x2)− sup

ν∈C(PY1 ,PY2 )

∫
⟨y1, y2⟩ dν(y1, y2)

≤
∫

⟨x1, x2⟩ dη|X1×X2(x1, x2)−
∫

⟨y1, y2⟩ dη|Y1×Y2(y1, y2)

≤
∫

⟨x1, x2 − y2⟩ − ⟨y1 − x1, y2⟩ dη(x1, x2, y1, y2)

≤
(∫

∥x2 − y2∥2dη|X2×Y2(x2, y2)
)1/2(∫

∥x1∥2dη|X1(x1)
)1/2

+
(∫

∥x1 − y1∥2dη|X1×Y1(x1, y1)
)1/2(∫

∥y2∥2dη|Y2(y2)
)1/2

= W2(P
X2 , P Y2) ·

(
E ∥X1∥2

)1/2
+W2(P

X1 , P Y1) ·
(
E ∥Y2∥2

)1/2
,

where we used the Cauchy–Schwarz inequality in the final inequality. Similarly, we can find η̃
such that η̃|Y1×Y2 , η̃|X2×Y2 , η̃|X1×Y1 are the corresponding optimal couplings between Y1 and Y2,
X2 and Y2, and X1 and Y1 respectively. Then,

⟨⟨Y1, Y2⟩⟩W2 − ⟨⟨X1, X2⟩⟩W2 ≤
∫

⟨y1, y2⟩ dη̃|Y1×Y2(y1, y2)−
∫
⟨x1, x2⟩ dη̃|X1×X2(x1, x2)

≤
∫

⟨y1 − x1, y2⟩ − ⟨x1, x2 − y2⟩ dη̃(x1, x2, y1, y2)

≤ W2(P
X1 , P Y1) ·

(
E ∥Y2∥2

)1/2
+W2(P

X2 , P Y2) ·
(
E ∥X1∥2

)1/2
.

Combining the above two bounds, we get the desried results.

Lemma 2.5. For L ∈ N, write V = {1, . . . , L}. Let (Xi,Ωi, νi), i ∈ V be L probability spaces.
Suppose that for some E ⊆ V ×V , and for each (i, j) ∈ E, we have a pre-specified joint probability
measure ξi,j on (Xi × Xj,Ωi ⊗ Ωj) such that ξi,j|Xi

= νi and ξi,j|Xj
= νj . If the simple undirected

graph G = (V,E) is acyclic, then there exists a joint probability measure ρ on
(∏L

i=1Xi,
⊗L

i=1Ωi

)
such that ρ|Xi

= νi for all i ∈ V and ρ|Xi×Xj
= ξi,j for all (i, j) ∈ E.

Proof. We assume first that G is connected. Then, there exists a traversal of all the vertices in G
such that apart from the first vertex in the traversal, each vertex has exactly one edge connected
to an earlier vertex. This can be done by using e.g. depth-first search or breadth first search,
after arbitrarily assigning a root node, and each node is connected only to its parent node when
first visited. Hence, without loss of generality, we may relabel the nodes so that this traversal
is given by the ordering 1, 2, . . . , L. We now prove by induction that for any ℓ ∈ {1, . . . , L},
there exists a measure ρ1,...,ℓ on X1 × · · · × Xℓ such that ρ1,...,ℓ|Xi

= νi for all i ∈ {1, . . . , ℓ} and
ρ1,...,ℓ|Xi×Xj

= ξi,j for all (i, j) ∈ E ∩ {1, . . . , ℓ}2.
The base case of the induction is trivially true as we can take ρ1 = ν1. Now assume that we

have successfully constructed ρ1,...,ℓ−1 for some ℓ ∈ {2, . . . , L}. Let ℓ′ be the only neighbour of
ℓ in {1, . . . , ℓ− 1} (the existence and uniqueness of ℓ′ is guaranteed by the traversal ordering of
the vertices in the previous paragraph). By the Disintegration Theorem [see e.g. GM89], there
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exists a probability measure ξℓ|ℓ′(· | xℓ′) on Xℓ such that dξℓ|ℓ′(xℓ | xℓ′)dνℓ′(xℓ′) = dξℓ′,ℓ(xℓ′ , xℓ).
Now, we define

dρ1,...,ℓ(x1, . . . , xℓ) = dρ1,...,ℓ−1(x1, . . . , xℓ−1)dξℓ|ℓ′(xℓ | xℓ′).

To see that ρ1,...,ℓ satisfies the required conditions, we check that for any B ∈ Ωi, ρ1,...,ℓ|Xi
(B) =

ρ1,...,ℓ−1|Xi
(B) = νi(B) if i ≤ ℓ− 1 and

ρ1,...,ℓ|Xℓ
(B) = ρ1,...,ℓ(X1 × · · · × Xℓ−1 ×B) =

∫
Xℓ′

∫
B

dξℓ|ℓ′(xℓ | xℓ′)dρ1,...,ℓ−1|Xℓ′
(xℓ′)

=

∫
Xℓ′

∫
B

dξℓ|ℓ′(xℓ | xℓ′)dνℓ′(xℓ′) = ξℓ′,ℓ(Xℓ′ ×B) = νℓ(B),

if i = ℓ. Moreover, if (i, j) ∈ E∩{1, . . . , ℓ}2, then forA ∈ Ωi andB ∈ Ωj , we either have (i, j) ∈
E ∩ {1, . . . , ℓ− 1}2, in which case ρ1,...,ℓ|Xi×Xj

(A×B) = ρ1,...,ℓ−1|Xi×Xj
(A×B) = ξi,j(A×B),

or (i, j) = (ℓ′, ℓ) (or (ℓ, ℓ′) which can be handled symmetrically), in which case,

ρ1,...,ℓ|Xℓ′×Xℓ
(A×B) =

∫
A

∫
B

dξℓ|ℓ′(xℓ | xℓ′)dρ1,...,ℓ−1|Xℓ′
(xℓ′)

=

∫
A

∫
B

dξℓ|ℓ′(xℓ | xℓ′)dνℓ′(xℓ′) = ξℓ′,ℓ(A×B).

This completes the induction. In particular, ρ1,...,L satisfies the desired properties of ρ in the
lemma.

2.5.9 Proof for Theorem 2.2

Define eventΘ := {∥b̂−b∗∥Σ < 1}, then in the regime of (2.6) we haveP(Θ) ≥ 1−4(log n)−1. We
henceforth work on the event Θ throughout the proof. Write the linear transformation A(b) =
(b∗ − b)X + ε for any b ∈ Rd×p.

Our proof strategy for Theorem 2.2 is to use the fact that b∗ maximizes L and b̂ maximizes Ln
to boundL(b̂)−L(b∗) by |L(b∗)−Ln(b∗)|+|L(b̂)−Ln(b̂)|. WriteB := {b ∈ Rd×p : ∥b−b∗∥Σ < 1}.
Then on the event Θ, the key to control the latter is to establish a bound on

sup
b∈B

∣∣∣W2
2 (P

A(b), PU)−W2
2 (P

A(b)
n , PU

m)
∣∣∣

in Proposition 2.4. The proof of Proposition 2.4 relies on rewriting the Wasserstein distances using
the Kantorovich dual formulation. Specifically, writing Φ̃b := {(f, g) ∈ L1(P

A(b)
n ) × L1(PU

m) :

vTu ≤ f(v) + g(u), ∀(v, u) ∈ Supp(P
A(b)
n )× Supp(PU

m)}, then for any fixed b ∈ B, by Theorem
2.3 and Lemma 2.16, there exists a conjugate pair (φ̃b;n,m, φ̃∗

b;n,m) such that

(φ̃∗
b;n,m, φ̃b;n,m) = argmin

(f,g)∈Φ̃b

∫
f dPA(b)

n +

∫
g dPU

m , (2.37)

1

2
W2

2 (P
A(b)
n , PU

m) =

∫
∥v∥2/2− φ̃∗

b;n,m(v) dP
A(b)
n (v) +

∫
∥u∥2/2− φ̃b;n,m(u) dP

U
m(u),
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and

∥u∥2/2 ≤ φ̃b;n,m(u) ≤ ∥u∥2/2 + Lb;n,m, ∥v∥2/2− Lb;n,m ≤ φ̃∗
b;n,m(v) ≤ ∥v∥2/2, (2.38)

where Lb;n,m := max{L2(A(b)i, Uj) : 1 ≤ i ≤ n, 1 ≤ j ≤ m}.
Before stating Proposition 2.4, we first establish two results on extensions of φ̃b;n,m and φ̃∗

b;n,m

onto the entire Rd, which will form the core of the argument in the proof of Proposition 2.4.

Proposition 2.2. Let φ̃ and φ̃∗ be defined as in (2.37) and setLb;n,m := maxi∈[n],j∈[m] L2(A(b)i, Uj).
Let ζb;n,m, φb;n,m and φ∗

b;n,m be defined such that for all v ∈ Rd,

ζb;n,m(v) := sup
u∈Supp(PA(b)

n )

{
vTu− φ̃b;n,m(u)

}
∨
(∥v∥2

2
− Lb;n,m

)
,

φb;n,m(v) := sup
u∈Rd

{
vTu− ζb;n,m(u)

}
,

φ∗
b;n,m(v) := sup

u∈Rd

{
vTu− φb;n,m(u)

}
.

Then we have

(i) for any (u, v) ∈ Rd × Rd, vTu ≤ φb;n,m(u) + φ∗
b;n,m(v);

(ii) φb;n,m(u) = φ̃b;n,m(u) for u ∈ Supp(P
A(b)
n ) and φ∗

b;n,m(v) = φ̃∗
b;n,m(v) for v ∈ Supp(PU

m);

(iii) for u, v ∈ Rd, −Lb;n,m ≤ ∥u∥2
2

− φb;n,m(u) ≤ 0 and 0 ≤ ∥v∥2
2

− φ∗
b;n,m(v) ≤ Lb;n,m;

(iv) Let πb;n,m ∈ C(PA(b)
n , PU

m) be the optimal coupling between P
A(b)
n and PU

m . Then for any
(u, v) ∈ Supp(πb;n,m), we have v ∈ ∂φb;n,m(u) and u ∈ ∂φ∗

b;n,m(v).

Proof. Note (i) is immediately followed by the definition of φb;n,m and φ∗
b;n,m. For part (ii), note

for any u ∈ Supp(PU
m)

φb;n,m(u) ≤ sup
v∈Rd

{
vTu− vTu+ φ̃b;n,m(u)

}
= φ̃b;n,m(u). (2.39)

For any v ∈ Supp(P
A(b)
n ),

φ∗
b;n,m(v) ≤ sup

u∈Rd

{
vTu− vTu+ ζb;n,m(v)

}
= ζb;n,m(v) ≤ φ̃∗

b;n,m(v) ∨
(∥v∥2

2
− ∥c∥∞

)
≤ φ̃∗

b;n,m(v). (2.40)

Assume any of (2.39) or (2.40) holds strictly, then because PA(b)
n and PU

m are finitely support it
follows that∫

φb;n,m(u)dP
U
m(u) +

∫
φ∗
b;n,m(v)dP

A(b)
n (v) <

∫
φ̃b;n,m(u)dP

U
m(u) +

∫
φ̃∗
b;n,m(v)dP

A(b)
n (v),

which contradicts to the optimality of (φ̃b;n,m, φ̃∗
b;n,m). This completes the proof for (ii).
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For part (iii), by the bounded property (2.38) and preceding constructions we have for u ∈ Rd

∥u∥2/2− φb;n,m(u) ≥ inf
v∈Rd

{
L2(u, v)− Lb;n,m

}
= −Lb;n,m. (2.41)

Moreover, we have

∥u∥2/2− φb;n,m(u) ≤ −
(
∥u∥2/2− ζb;n,m(u)

)
= − inf

u′∈Supp(PA(b)
n )

(
L(u, u′)− (∥u′∥2/2− φ̃b;n,m(u

′))
)
∧ Lb;n,m ≤ 0, (2.42)

where the last step follows by the fact that ∥u′∥2/2 − φ̃b;n,m(u
′) ≤ 0, for all u′ ∈ Supp(P

A(b)
n ).

Here, we proved that −Lb;n,m ≤ ∥u∥2
2

− φb;n,m(u) ≤ 0 and the result holds. For any v ∈ Rd, by
(2.42) we have

∥v∥2/2− φ∗
b;n,m(v) = inf

u∈Rd

(
L2(u, v)− (∥u∥2/2− φb;n,m(u))

)
≥ 0. (2.43)

Moreover, by (2.41) it follows that

∥v∥2/2− φ∗
b;n,m(v) ≤ −(∥v∥2/2− φb;n,m(v)) ≤ Lb;n,m. (2.44)

Thus we have 0 ≤ ∥v∥2
2

− φ∗
b;n,m(v) ≤ Lb;n,m as desired.

To prove (iv), note (ii) implies that∫
(φb;n,m(u) + φ∗

b;n,m(v)− vTu)dπb;n,m(u, v) = 0.

Furthermore, part (i) implies that the integrand of the above is nonnegative. Thus it follows that

φb;n,m(u) + φ∗
b;n,m(v) = vTu, ∀(u, v) ∈ Supp(πb;n,m).

Then the conclusion follows by [Vil21, Proposition 2.4].

Now we argue that for all b ∈ B, φ∗
b;n,m (and similarly, φb;n,m) is a piecewise Lipschitz function

on a high probability event that does not depend on b. The following lemma plays a key role in the
argument. It implies that the local Lipschitz constant of φ∗

b;n,m is largely driven by the magnitude
of the subdifferential of φ∗

b;n,m. The proof is analogous to Manole and Niles-Weed [MN24, Lemma
10], but for the sake of completeness, we provide it here.

Lemma 2.6. Suppose P and Q are two distributions on Rd. Let (φ0, φ
∗
0) be the conjugate pair that

solves Ĩ2(P,Q) (see (2.17)). Then for any r ≥ 1, φ0 : Bd0,r → R and φ∗
0 : Bd0,r → R are Lipschitz

continuous with parameters L0 and L∗
0 respectively, where

L0 := sup
{
∥y∥ : y ∈ ∂φ0

(
Bd0,r

)}
, and L∗

0 := sup
{
∥z∥ : z ∈ ∂φ∗

0(Bd0,r)
}

Proof. We focus on φ0 and the same argument can be used for φ∗
0. Firstly, by Villani [Vil21,

Proposition 2.4], for any v ∈ Bd0,r, φ0 admits the following representation

φ0(v) = sup
u∈∂φ0(v)

{
uTv − φ∗

0(u)
}
.
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Thus, there exists a sequence of uk ∈ ∂φ0(v) such that

φ0(v) ≤ uTk v − φ∗
0(uk) +

1

k
, for k = 1, 2, . . . .

Then for any v′ ∈ Bd0,r, we have

φ0(v)− φ0(v
′) ≤ uTk v − φ∗

0(uk) +
1

k
− uTk v

′ + φ∗
0(uk)

= uTk (v − v′) +
1

k
≤ L0∥v − v′∥+ 1

k
,

and the Lipschitz property follows by letting k → +∞.

For all j ≥ 0, define Lj := [−3j, 3j]d and let Pj := Lj \ Lj−1. We note that each Pj can be
further partitioned into N := 3d − 1 cubes, say {Pj,k}k=1,...,N , that are each congruent to Lj−1.
We note that all elements of Pj has norm bounded by ℓj := supz∈Pj

∥z∥ = 3j
√
d.

For any I ⊂ Rd, we write C(I) for the set of all the convex function on I . We define Cm,u(I) :=
{f ∈ C(I) : ∃m,u > 0, s.t. |f(x) − f(y)| ≤ m∥x − y∥, |f(x)| ≤ u, ∀x, y ∈ I} to be the class
of m-Lipschitz convex functions on I bounded in value by u. Given a sequence M and U , define

CM,U :=
{
f : Rp × Rd → R : f |Pj,k

∈ CMj ,Uj
(Pj,k), j ≥ 0, 1 ≤ k ≤ N

}
.

We now prove that for suitable choices ofM , U andR, T , φ∗
b;n,m−φ∗

b;n,m(0) ∈ CM,U and φb;n,m−
φb;n,m(0) ∈ CR,T on a high probability event that does not depend on b. Recalling that we write
S = Σ−1/2X and Si = Σ−1/2Xi for i ∈ [n].

Let’s first discuss the concentration property ofPU andPA(b) and their empirical counterparts
PU
m and PA(b)

n . In fact, due to the Gaussian assumption, PU is a (
√
2d, 2)-sub-Weibull distribution.

Moreover, by the sub-Weibull assumptions on S and ε, there exists a constant σ > 0 depends on
σ1, σ2 such that ∥S∥ + ∥ε∥ ∼ (σ, α ∧ β)-sub-Weibull. Thus by noting that ∥A(b)∥ ≤ ∥S∥ + ∥ε∥
for all b ∈ B, PA(b) is a (σ, α ∧ β)-sub-Weibull random vector as well. However, the concentra-
tion of the corresponding empirical measures introduces extra randomness on the sub-Weibull
parameters, as defined here

E1,m =

∫
exp

(∥u∥2
4d

)
dPU

m , and Eb;2,n =

∫
exp

(∥v∥α∧β
4σα∧β

)
dPA(b)

n .

The following lemma constructs the sub-Weibull properties of PU
m and PA(b)

n .

Lemma 2.7. Define E2,n := supb∈B Eb;2,n. Then for any fixed n,m ≥ 1 we have that PU
m is

((2dE1,m)
1/2, 2)-sub-Weibull and PA(b)

n is (σ(2E2,n)
1/(α∧β), α ∧ β)-sub-Weibull, where E1,m ≤

2+
√

logm
m

with probability at least 1−2(logm)−1 and E2,n ≤ 2+
√

logn
n

with probability at least
1− 2(log n)−1.

Proof. We only need to note that E1,m ≥ 1, and Jensen’s inequality yields that∫
exp

( ∥u∥2

4dE1,m

)
dPU

m ≤ E
1

E1,m

1,m ≤ 2.
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One the other hand, for each fixed b ∈ B, a similar calculation can be applied to PA(b)
n and obtain

that PA(b)
n ∼ (σ(2Eb;2,n)

1/(α∧β), α ∧ β)-sub-Weibull. Thus by noting that∫
exp

( ∥v∥α∧β

4Eb;2,nσα∧β

)
dPA(b)

n (v) ≥
∫

exp
( ∥v∥α∧β

4E2,nσα∧β

)
dPA(b)

n (v)

we have PA(b)
n ∼ (σ(2E2,n)

1/(α∧β), α ∧ β)-sub-Weibull
Now we control the sub-Weibull parameters. Define Γ1 :=

{
E1,m ≤ 2 +

√
logm
m

}
, then by

the Chebyshev’s inequality we have

P(Γc1) ≤ P
(
|E1,m − EE1,m| ≥

√
logm

m

)
≤ mVar(E1,m)

logm
≤ 2

logm
.

To control E2,n, we first note

EE2,n = E sup
b∈B

exp
(1
4

(∥A(b)∥
σ

)α∧β) ≤ E exp
(1
4

(∥S∥+ ∥ε∥
σ

)α∧β) ≤ 2.

Then define Γ2 :=
{
E2,n ≤ 2 +

√
logn
n

}
, then we have

P(Γc2) ≤ P
(
E2,n − E exp

(1
4

(∥S∥+ ∥ε∥
σ

)α∧β) ≥
√

log n

n

)
≤ P

( 1
n

n∑
i=1

exp
(1
4

(∥Si∥+ ∥εi∥
σ

)α∧β)− E exp
(1
4

(∥S∥+ ∥ε∥
σ

)α∧β) ≥
√

log n

n

)
≤ 2

log n
,

where the final inequality is obtained by Chebyshev’s inequality.

Proposition 2.3. Let Jn =
⌊
1
2
log3

(
logn
16γ2d

)⌋
, Im =

⌊
1
2
log3

(
logm
8d

)⌋
and ln,m = (logm) ∨

(log n)2/(α∧β). Then there exist an event Υ with probability at least 1 − 12(log n)−1 and con-
stants C ′

i, C
′
i, C̃i, C̃i > 0 depends on d, γ1, γ2, σ1, σ2, α, β such that on Υ, for all b ∈ B, we have

φ∗
b;n,m − φ∗

b;n,m(0) ∈ CM,U and φb;n,m − φb;n,m(0) ∈ CR,T where M and U are chosen as

Mj =

{
C ′

0ℓj, 0 ≤ j ≤ Jn

C ′
1ln,mℓj, j > Jn

, Uj =

{
C̃0ℓ

3
j , 0 ≤ j ≤ Jn

C̃1ln,mℓ
3
j , j > Jn

, (2.45)

and R and T are chosen as

Ri =

{
C ′

2ℓi, 0 ≤ i ≤ Im

C ′
3ln,mℓi, i > Im

, Ti =

{
C̃2ℓ

3
i , 0 ≤ i ≤ Im

C̃3ln,mℓ
3
i , i > Im

. (2.46)

Proof. Note Lemma 2.6 implies that in order to quantify the Lipschitz constant of φ∗
b;n,m on Pj,k,

we only need to bound the magnitude of sup{∥y∥ : y ∈ ∂φ∗
b;n,m(Pj,k)}. To this end, we first note

that ∂φ∗
b;n,m(v) = ∂c(∥ · ∥2/2−φ∗

b;n,m)(v) and ∥ · ∥2/2−φ∗
b;n,m is obviously a c-concave function.
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Thus by Lemma 2.2(iv) and Lemma 2.7, we can apply Manole and Niles-Weed [MN24, Theorem
11] to obtain2 that there exists a constant C0 > 0 depends on d such that for any v ∈ Pj,k and
y ∈ ∂φ∗

b;n,m(v), we have

∥y∥ ≤ C0(2dE1,m)
1/2

{
(∥v∥+ 1) ∨ sup

w:∥v−w∥≤2

[
log

( 1

P
A(b)
n (Bdw,3)

)]1/2}
. (2.47)

Thus to upper bound the magnitude of ∂φ∗
b;n,m(v) we only need to prove an anticoncentration

bound for PA(b)
n .

We first note that from (2.12), for any 0 ≤ j ≤ Jn, v ∈ Pj and w such that ∥w − v∥ ≤ 2, we
have

P ε(Bdw,2) ≥
∫
Bd
w,2\Bd

0

γ1 exp
(
−γ2∥e∥2

)
de ≥ πd/2(2d − 1)

Γ(d/2 + 1)
γ1 exp

(
− 2γ2∥z∥2 − 50γ2

)
≥ 2K1 exp

(
−2γ2ℓ

2
j

)
, (2.48)

whereK1 ∈ (0, 1) is a constant depending on d, γ1, γ2. Observe that the right-hand side does not
depend on z or w, hence, we may take infimum over v ∈ Pj and w such that ∥w − v∥ ≤ 2 and
have the same lower bound. Hence, we have

P ε ⊗ P S(Bdw,2 × Bp0) = P ε(Bdw,2)P S(Bp0) ≥ 2K ′
1 exp

(
−2γ2ℓ

2
j

)
,

for some K ′
1 ∈ (0, 1) depends on d, γ1, γ2, σ1 and α, where the sub-Weibull assumption on S has

been exploited in the final inequality.
On the other hand, let Bd := {Bda,r : a ∈ Rd, r > 0} be the set of all balls in Rd. Let

ũ =
√

160d logn
n

and define

Υ1 :=
{
sup
B∈Bd

|P ε
n ⊗ P S

n (B × Bp0,)− P ε ⊗ P S(B × Bp0)| < ũ
}
.

Thus, since ũ ≲ K ′
1n

−1/8 ≤ K ′
1e

−2γ2ℓ2j for 0 ≤ j ≤ Jn, working on Υ1 we have P ε
n ⊗ P S

n (Bdw,2 ×
Bd0) ≥ K ′

1 exp
(
−2γ2ℓ

2
j

)
. Thus consider the event

Υ2 :=
Jn⋂
j=0

{
inf
v∈Pj

inf
w:∥v−w∥≤2

P ε
n ⊗ P S

n (Bdw,2 × Bp0) ≥ K ′
1 exp

(
−2γ2ℓ

2
j

)}
,

we have Υ1 ⊂ Υ2. Note the Vapnik–Chervonenkis (VC) dimension of Bd is no more than d + 2
[See e.g. DGL13, Corollary 13.2], by the VC-inequality [see VC15, Theorem 2] we have

P(Υc
1) ≲ nd+2 exp

(
−nũ2/32

)
≤ n2−4d ≤ n−2, (2.49)

2We remark that the bound given below uses the probability mass on Bd
w,3 whereas the original formulation in

Manole and Niles-Weed [MN24, Theorem 11] has Bd
w,1 instead. We have used a slightly different radius here for the

convenience of the subsequent argument. The exact radius is unimportant in the argument used in that theorem and
the same proof will work verbatim with radius changed to 3.
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whence P(Υ2) ≥ 1−n−2. Thus working on Υ2 ∩Γ1, by ∥A(b)i∥ ≤ ∥Si∥+ ∥εi∥ for all b ∈ B and
i ∈ [n], we have PA(b)

n (Bdw,3) ≥ K ′
1 exp

(
−2γ2ℓ

2
j

)
, and combining this with (2.47), we conclude

that for any 1 ≤ k ≤ N and 0 ≤ j ≤ Jn, there exits some sufficiently large constant C ′
0 > 0

depends on d, γ1, γ2, σ1, α such that

sup
y∈∂φ∗

b;n,m(Pj,k)

∥y∥ ≤ C0(2dE1,m)
1/2

(
ℓj + 1 +

√
2ℓjγ

1/2
2 +

√
log(1/K ′

1)
)

≤ C ′
0E

1/2
1,mℓj ≤ C ′

0

(
2 +

√
logm

m

)1/2

ℓj ≲ C ′
0ℓj :=Mj. (2.50)

When j > Jn, by Lemma 2.2(iii) and Manole and Niles-Weed [MN24, Proposition 16], we
only need to bound Lb;n,m. Note Lb;n,m ≤ Ln,m := 2maxi∈[n] ∥Σ−1/2Xi∥2 + 2maxi∈[n] ∥εi∥2 +
2maxj∈[m] ∥Uj∥2. Define rn,m := 2σ2

1(4 log n)
2/α + 2σ2

2(4 log n)
2/β + 8d logm and consider the

event Υ3 := {Ln,m < rn,m}. By part(i) of Proposition 2.5 and union bound, it follows that

P
(
Υc

3

)
≤ P

(
max
i∈[n]

∥Σ−1/2Xi∥2 ≥ σ2
1(4 log n)

2/α
)
+ P

(
max
i∈[n]

∥εi∥2 ≥ σ2
2(4 log n)

2/β
)

+ P
(
max
j∈[m]

∥Uj∥2 ≥ 8d logm
)
≤ 4n−1 + 2m−1. (2.51)

Therefore on the event Υ3, by Manole and Niles-Weed [MN24, Proposition 16] we have that there
exists a universal constant C1 > 0 and a sufficiently large C ′

1 > 0 depends on σ1, σ2 such that for
any 1 ≤ k ≤ N ,

sup
y∈∂φ∗

b;n,m(Pj,k)

∥y∥ ≤ C1(ℓj + rn,m) ≤ C ′
1ln,mℓj =:Mj, for all j > Jn. (2.52)

Putting (2.50) and (2.52) together, for some constants C̃0, C̃1 > 0 depend on d, γ1, γ2, σ1, σ2, α,
we have φ∗

b;n,m − φ∗
b;n,m(0) ∈ CM,U on the event Υ′ := Υ2 ∩ Γ1 ∩ Υ3, where M = (Mj)j≥0 and

U = (Uj)j≥0 are chosen as

Mj =

{
C ′

0ℓj, 0 ≤ j ≤ Jn

C ′
1ln,mℓj, j > Jn

, Uj =

{
C̃0ℓ

3
j , 0 ≤ j ≤ Jn

C̃1ln,mℓ
3
j , j > Jn

,

as desired.
A similar argument can be applied to study the Lipschitz property of φb;n,m. Since U ∼

N (0, Id), for all i ≤ Im, u ∈ Pi and all w such that ∥w − u∥ ≤ 2, we have

PU(Bdw) =
∫
Bd
w

(2π)−d/2 exp
(
−∥y∥2/2

)
dy ≥ 2K2e

−ℓ2i ,

where K2 ∈ (0, 1) is a constant depends only on d. Let ṽ =
√

160d logm
m

, and define

Υ4 :=
{
sup
B∈Bd

|PU
m(B)− PU(B)| < ṽ

}
, and Υ5 :=

Im⋂
i=0

{
inf
u∈Pi

inf
w:∥u−w∥≤2

PU
n (Bdw) ≥ K2e

−ℓ2i
}
.

Then since ṽ ≤ m−1/8 ≤ K2e
−ℓ2Im we have Υ4 ⊂ Υ5. Furthermore, by leveraging the VC-

inequality again, we can deduce that P(Υc
4) ≤ m−2, which implies that P(Υ5) ≥ 1 −m−2. On
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the event Υ5∩Γ2, by applying Manole and Niles-Weed [MN24, Theorem 11] and Lemma 2.6 again
we obtain that for 0 ≤ i ≤ Im, there exists constants C2 > 0 depends on d, α, β and C ′

2 > 0
depends on d, σ, α, β such that

sup
z∈∂φb;n,m(u)

∥z∥ ≤ C2σ(2E2,n)
1/(α∧β)(2ℓi + 1 +

√
log(1/K2))

≤ C ′
2E

1/(α∧β)
2,n ℓi ≤ C ′

2

(
2 +

√
log n

n

)1/(α∧β)
ℓi ≲ C ′

2ℓi := Ri. (2.53)

When i > Im, since we still have |∥u∥2/2 − φb;n,m| ≤ Lb;n,m ≤ Ln,m by Lemma 2.2(iii),
working on the event Υ3, there exists an absolute constant C3 > 0, and C ′

3 > 0 depends on
σ1, σ2 such that for 1 ≤ k ≤ N .

sup
z∈∂φb;n,m(Pi,k)

∥z∥ ≤ C3(ℓi + rn,m) ≤ C ′
3ln,mℓi := Ri for i > Im. (2.54)

Thus combine (2.53) and (2.54) we can deduce that there exists constants C̃2, C̃3 > 0 depend on
d, α, β, σ1, σ2 such that φb;n,m − φb;n,m(0) ∈ CR,T on the event Υ = Υ′ ∩Υ5 ∩ Γ2, where

Ri =

{
C ′

2ℓi, 0 ≤ i ≤ Im

C ′
3ln,mℓi, i > Im

, Ti =

{
C̃2ℓ

3
i , 0 ≤ i ≤ Im

C̃3ln,mℓ
3
i , i > Im

.

Finally, combining the controls on the probability of Υ2,Υ3,Υ5,Γ1 and Γ2, we arrive at the the
upper bound P(Υ) ≥ 1−n−2−4n−1−2m−1−m−2−2(logm)−1−2(log n)−1 ≥ 1−12(log n)−1

when m ≥ n, which completes the proof.

Now we are ready to introduce the core proposition in the proof.

Proposition 2.4. There exists a constant C > 0 depending on d, α, β, σ1, σ2, γ1, γ2 such that for
any fixed n,m ≥ 1, the following inequality holds

sup
b∈B

∣∣W2
2 (P

A(b), PU)−W2
2 (P

A(b)
n , PU

m)
∣∣ ≤ C(logm)

8
2∧α∧β

(√
p

n
+

1

n2/d

)
(2.55)

with probability at least 1− 29(log n)−1.

Proof. Note part (i) and part (iii) of Lemma 2.2 implies that (∥ · ∥2 − φ∗
b;n,m, ∥ · ∥2 − φb;n,m) is a

feasible pair to the duality of the Kantorovich problem between PA(b) and PU . This yields that

1

2
W2

2 (P
A(b), PU) ≥

∫ (
∥v∥2

2
− φ∗

b;n,m(v)

)
dPA(b)(v) +

∫ (
∥u∥2

2
− φb;n,m(u)

)
dPU(u)

=

∫
∥v∥2

2
dPA(b)

n (v) +

∫
∥u∥2

2
dPU

m(u)

+

∫
∥v∥2

2
(dP (A(b) − dPA(b)

n )(v) +

∫
∥u∥2

2
(dPU − dPU

m)(u)

−
{∫

φ∗
b;n,m(v)dP

A(b)
n (v) + φb;n,m(u)dP

U
m(u)

}
−

{∫
φ∗
b;n,m(v)d

(
PA(b) − PA(b)

n

)
(v) +

∫
φb;n,m(u)d

(
PU − PU

m

)
(u)

}
.
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By the definition of (φb;n,m, φ∗
b;n,m), we have W2

2 (P
A(b)
n , PU

m) =
∫ (∥v∥2

2
− φ∗

b;n,m(v)
)
dP

A(b)
n (v) +∫ (∥u∥2

2
− φb;n,m(u)

)
dPU

m(u). Consequently, from the above display, we deduce that

1

2
W2

2 (P
A(b)
n , PU

m)−
1

2
W2

2 (P
A(b), PU)

≤
∫
φ∗
b;n,m(v)d

(
PA(b) − PA(b)

n

)
(v) +

∫
φb;n,m(u)d

(
PU − PU

m

)
(u)︸ ︷︷ ︸

=:Eb;n,m

+

∫
∥v∥2

2
d
(
PA(b)
n − PA(b)

)
(v) +

∫
∥u∥2

2
d
(
PU
m − PU

)
(u)︸ ︷︷ ︸

=:Fb;n,m

. (2.56)

On the other hand, defineΨb := {(f, g) ∈ L1(PA(b))×L1(PU) : vTu ≤ f(v)+g(u), ∀(v, u) ∈
Supp(PA(b))× Supp(PU)}, then Theorem 2.3 implies that for any b ∈ B there exists a conjugate
pair (ψ∗

b , ψb) such that

(ψ∗
b , ψb) = argmin

f,g∈Ψb

∫
f dPA(b) +

∫
g dPU ,

1

2
W2

2 (P
A(b), PU) =

∫
∥v∥2/2− ψ∗

b (v) dP
A(b)(v) +

∫
∥u∥2/2− ψb(u) dP

U(u).

Since Ψb ⊆ Φ̃b, (∥v∥2/2 − ψ∗
b (v), ∥u∥2/2 − ψb(u)) is a feasible solution for the duality between

P
A(b)
n and PU

m . Therefore, we can rerun the previous derivation and obtain that

1

2
W2

2 (P
A(b)
n , PU

m)−
1

2
W2

2 (P
A(b), PU)

≥
∫
ψ∗
b (v)d

(
PA(b) − PA(b)

n

)
(v) +

∫
ψb(u)d

(
PU − PU

m

)
(u)︸ ︷︷ ︸

=:Gb;n,m

+

∫
∥v∥2

2
d
(
PA(b)
n − PA(b)

)
(v) +

∫
∥u∥2

2
d
(
PU
m − PU

)
(u). (2.57)

Write the first two terms and the last two terms of (2.56) asEn,m and Fn,m respectively, and write
the first two terms of (2.57) as Gn,m. Then combining (2.56) and (2.57), for ϑk defined in (2.68),
we have

sup
b∈B

∣∣∣1
2
W2

2 (P
A(b)
n , PU

m)−
1

2
W2

2 (P
A(b), PU)

∣∣∣ ≤ sup
b∈B

|Eb;n,m|+ 2 sup
b∈B

|Fb;n,m|+ sup
b∈B

|Gb;n,m|

≲ (logm)
6

2∧α∧β
(
ϑn +

√
p

n
+

√
log n

n
+ ϑm +

√
logm

m

)
,

≤ (logm)
8

2∧α∧β

(√
p

n
+

1

n2/d

)
. (2.58)

with probability at least 1−29(log n)−1, where we have used Lemmas 2.8, 2.11 and 2.10 to bound
each of the three terms in the penultimate inequality.
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Lemma 2.8. There exists C > 0, depending only on d, α, β, γ2, σ1, σ2, and an event Ω with proba-
bility at least 1− 18(log n)−1, such that on Ω, for any b ∈ B, we have∣∣∣∣∫ φ∗

b;n,m(v) d
(
PA(b) − PA(b)

n

)
(v)

∣∣∣∣ ≤ C(logm)
6

2∧α∧β

(
ϑn +

√
p

n
+

√
2 log n

n

)
∣∣∣∣∫ φb;n,m(u) d

(
PU − PU

m

)
(u)

∣∣∣ ≤ C(logm)
6

2∧α∧β

(
ϑm +

√
2 logm

m

)
,

where ϑn is defined as (2.68).

Proof. We note that the value of the integrals on the left-hand side of both inequalities will not
change if we add any constant to the functions ϕ∗

b;n,m and ϕb;n,m. Hence, we may assume without
loss of generality throughout this proof that ϕ∗

b;n,m(0) = ϕb;n,m(0) = 0.
Note that due to the sub-Weibull assumptions on ε and S, and combining with Proposition

2.6(ii), we have (ε, S) ∼ (ρ, α ∧ β)-sub-Weibull for ρ > 0 depending only on σ1 and σ2. Then let
κ = ρ(4 log n)1/(α∧β) and Ω1 := {max1≤i≤n ∥(εi, Si)∥ ≤ κ}, and by Proposition 2.5(i), we have

P(Ωc
1) ≤ nP(∥(ε, S)∥ ≥ κ) ≤ 2n exp

{
−1

2
(κ/ρ)α∧β

}
≤ 2

n
.

For any b ∈ B, define the linear projection Tb : Rp × Rd → Rd such that

Tb(s, e) := (b∗ − b)Σ1/2s+ e. (2.59)

Write Eb = {Tb(s, e) ∈ Rd : (s, e) ∈ Bd+p0,κ }. Working on the event Ω1 and observing that
∥Tb∥op ≤ 1 for any b ∈ B, we have∫

Rd\Eb

φ∗
b;n,m(v) d

(
PA(b) − PA(b)

n

)
(v) =

∫
Rd+p\Bd+p

0,κ

φ∗
b;n,m ◦ Tb(e, s) dP ε ⊗ P S(e, s)

(a)

≤
∫
Rd+p\Bd+p

0,κ

(
∥Tb(e, s)∥2

2
+ rn,m

)
d(P ε ⊗ P S)(e, s)

≤
∫
Rd+p\Bd+p

0,κ

(
∥(e, s)∥2

2
+ rn,m

)
d(P ε ⊗ P S)(e, s)

(b)

≤ C4e
− 1

4
(κ
ρ
)α∧β

+
2rn,m
n2

≲
C4

n
, (2.60)

where we use part (iii) of Proposition 2.2 to obtain (a) and Lemma 2.14 to obtain (b) and C4 > 0
is a constant only depending on d, σ1, σ2, α, β.

On the other hand, for X ⊆ Rd, we define Lip1,1(X ) := {f ∈ Lip1(X ) : supx∈X |f(x)| ≤ 1}
to be the class of 1-Lipschitz functions on X uniformly bounded by 1. Consider the following
function class

F :=
{
(s, e) 7→ (φ ◦ Tb)(s, e)1Bd+p

0
(s, e) : b ∈ B, φ ∈ Lip1,1(Bd0)

}
. (2.61)

Let jn = (Jn + 1) + ⌈log3(ρ(4 log n)1/(α∧β)/d1/2)⌉. Then we have 3jn
√
d ≥ κ, which im-

plies that Bd0,κ ⊆
⋃jn
j=0

⋃N
k=1 Pj,k for Pj,k defined before Lemma 2.7. Let Υ be the event with
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probability 1− 12(log n)−1 on which Proposition 2.3 holds. Then, from Proposition 2.3, we have
φ∗
b;n,m|Bd

0,κ
is Lipschitz continuous with parameter Mjn and upper bound Ujn , for Mj and Uj are

defined in (2.45). Specifically, since jn > Jn, from (2.45), there exists C5 > 0, depending only on
d, α, β, σ1, σ2, γ2, such that Mjn ∨ Ujn ≤ C5(logm)

5
2∧α∧β . Whence, observing that

φ∗
b;n,m

(
κTb(·, ·)

)
1Bd+p

0
(·, ·)

C5(logm)
5

2∧α∧β

∈ F ,

we deduce that∫
Eb

φ∗
b;n,m(v)

C5κ(logm)
5

2∧α∧β

d
(
PA(b) − PA(b)

n

)
(v)

=

∫
Bd+p
0,κ

φ∗
b;n,m(Tb(s, e))

C5κ(logm)
5

2∧α∧β

d(P ε ⊗ P S − P ε
n ⊗ P S

n )(e, s)

=

∫
Bd+p
0,1

φ∗
b;n,m(κTb(s, e))

C5(logm)
5

2∧α∧β

d(P ε ⊗ P S − P ε
n ⊗ P S

n )(e, s)

≤ sup
f∈F

{∫
f(s, e) d(P ε ⊗ P S − P ε

n ⊗ P S
n )(e, s)

}
. (2.62)

By Lemma 2.9 and Wainwright [Wai19, Theorem 4.10], there exists an event Ω2 with proba-
bility at least 1− n−1, on which for some constant C ′ > 0, depending only on d, we have

sup
f∈F

∣∣∣∫ f d(P ε ⊗ P S − P ε
n ⊗ P S

n )
∣∣∣ ≤ 2C ′

(
ϑn +

√
p

n

)
+

√
2 log n

n
. (2.63)

Combining (2.60), (2.62) and (2.63), we have on event Υ ∩ Ω1 ∩ Ω2 that∫
φ∗
b;n,m(v) d

(
PA(b) − PA(b)

n

)
(v) ≤ C5κ(logm)

5
2∧α∧β

(
2C ′

(
ϑn +

√
p

n

)
+

√
2 log n

n

)
+
C4

n

≤ C ′
5(logm)

6
2∧α∧β

(
ϑn +

√
p

n
+

√
2 log n

n

)
,

for some C ′
5 > 0 depending only on d, α, β, σ1, σ2, γ2. A symmetric argument shows that on Υ∩

Ω1 ∩Ω2,
∫
−φ∗

b;n,md(P
A(b) −P

A(b)
n ) can be controlled by the same upper bound. This establishes

the first claim of the lemma.
A similar argument is applied to obtain the bound for the empirical process of φb;n,m. Let

γ = 2
√
2d logm, and define Ω3 := {max1≤i≤m ∥Ui∥ ≤ γ}. Then by a union bound we have

P(Ωc
3) ≤ mP

(
∥U1∥ ≥ γ

)
≤ 2m exp

(
−1

2
γ2

2d

)
≤ 2

m
. Working on Ω3 we deduce that for some

absolute constant C6 > 0,

∫
Rd\Bd

0,γ

φb;n,m(u) d(P
U − PU

m)(u) =

∫
Rd\Bd

0,γ

φb;n,m(u) dP
U(u)

(c)

≤
∫
Rd\Bd

0,γ

∥u∥2

2
dPU(u)

(d)

≤ C6

m2
. (2.64)
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In the above, we use part (iii) in the Proposition 2.2 to obtain (c) and Lemma 2.14 in inequality
(d).

Define

H = {g 1Bd
0
: g ∈ Lip1,1(Bd0)}. (2.65)

Let im := (Im + 1) +
⌈
1
2
log3(8d logm)

⌉
. Observe that 3im

√
d ≥ γ thus we have Bd0,γ ⊂⋃im

i=0

⋃N
k=1 Pi,k. Since φb;n,m ∈ CR,T on Υ according to Proposition 2.3, we have that φb;n,m|Bd

0,γ

is bounded and Lipschitz continuous with upper bound Tim and Lipshictz constant Rim as de-
fined in (2.46). Moreover, by the explicit display of (2.46), there exists a constant C7 depends on
d, σ1, σ2, α, β, γ2 such that Rim ∨ Tim ≤ C7(logm)

5
2∧α∧β . Therefore, on Υ, we have

φb;n,m(⟨γ, ·⟩)
C7(logm)

5
2∧α∧β

1Bd
0,1
(·) ∈ H,

and consequently,
1

C7γ(logm)
5

2∧α∧β

∫
Bd
0,γ

φb;n,m(u) d(P
U − PU

m)(u) ≤ sup
h∈H

{∫
h(u) d(PU − PU

m)(u)
}
. (2.66)

Then applying Lemma 2.9 and Wainwright [Wai19, Theorem 4.10], we derive that there exists an
event Ω4 with probability at least 1−m−1 such that on this event we have

sup
h∈H

∣∣∣∣∫ h d(PU − PU
m)

∣∣∣∣ ≤ 2ϑm +

√
2 logm

m
. (2.67)

Consequently, combining (2.64), (2.66) and (2.67), and working on the event Υ ∩ Ω3 ∩ Ω4, we
obtain ∫

φb;n,m(u) d(P
U − PU

m) ≤ C7(logm)
5

2∧α∧β γ
(
2ϑm +

√
2 logm

m

)
+
C6

m
,

≤ C ′
7(logm)

6
2∧α∧β

(
ϑm +

√
2 logm

m

)
.

for some C ′
7 depends on d, σ1, σ2, α, β, γ2. A symmetric argument can be applied to establish the

upper bound for
∫
−φb;n,m(u) d(PU − PU

m) and the second claim follows. Finally, the proof is
complete by observing that P(Υ ∩ Ω1 ∩ Ω2 ∩ Ω3 ∩ Ω4) ≥ 1− 18(log n)−1.

Lemma 2.9. Suppose that T be a subset of linear maps from Rp to Rd whose operator norms are
bounded by 1 and let L be a subset of {g : g ∈ Lip1,1(Bd0), g(0) = 0 and g is convex}. Define F :=
{(g ◦ h)1Bp

0
: h ∈ T , g ∈ L}. Let P ∈ P2(Rp). Then exists C > 0, depending only on d, such that

Rn(F , P ) ≤ C

(
ϑn +

√
p

n

)
,

where

ϑk :=


k−2/d, if d ≥ 5,
k−1/2 log k, if d = 4,
k−1/2, if d ≤ 3.

(2.68)

for k ∈ N.
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Proof. For any fixed δ ∈ (0, 1), let G be a δ-covering set of L with respect to ∥ · ∥L∞(Bd
0)

. By
Bronshtein [Bro76, Remark 1 and Theorem 6], we have N0 := |G| ≤ eC8(4/δ)d/2 for some C8 >
0, depending only on d. Similarly, let H be a δ-covering set of T with respect to ∥ · ∥op. By
Wainwright [Wai19, Lemma 5.7], we have N1 := |H| ≤ (1+2/δ)dp. Now, given any f = g ◦h ∈
F , we can find g′ ∈ G and h′ ∈ H such that ∥g′−g∥L∞(Bd

0)
≤ δ and ∥h′−h∥op ≤ δ. Consequently,

for X ∼ P , we have

∥(g ◦ h− g′ ◦ h′)1Bp
0
∥L2(P ) ≤ ∥(g ◦ h− g′ ◦ h)1Bp

0
∥L2(P ) + ∥(g′ ◦ h− g′ ◦ h′)1Bp

0
∥L2(P )

=
{
E
∣∣∣(g − g′) ◦ h(X)1{∥X∥≤1}

∣∣∣2}1/2

+
{
E
∣∣∣g′ ◦ (h− h′)(X)1{∥X∥≤1}

∣∣∣2}1/2

≤ 2δ.

which implies

logN(2δ,F , ∥ · ∥L2(P )) ≤ log(N0N1) ≤ C8

(
4

δ

)d/2

+ dp log

(
1 +

2

δ

)
≤ C8

(
4

δ

)d/2

+
2dp

δ
.

(2.69)

Since all functions in F are uniformly bounded by 1, the L2(P )-diameter of F is bounded by 2.
Thus, by Dudley’s chaining [see e.g. Wai19, Theorem 5.22], for any ϵ ∈ [0, 1], we have

Rn(F , P ) ≤ 2ϵ+
32√
n
E
∫ 2

ϵ/4

log1/2N(δ,F , ∥ · ∥L2(P )) dδ

≤ 2ϵ+
25+3d/4C

1/2
8

n1/2

∫ 2

ϵ/4

1

δd/4
dδ +

64(dp)1/2

n1/2

∫ 2

ϵ/4

1

δ1/2
dδ.

By choosing ϵ ≍ n−2/d if d ≥ 4 and ϵ = 0 otherwise, we deduce from the previous inequality
that there exists C > 0 depending only on d such that

Rn(F , P ) ≤ C


n−2/d + (p/n)1/2, if d ≥ 5

n−1/2(log n+ p1/2), if d = 4

(p/n)1/2, if d ≤ 3,
,

completing the proof.

Lemma2.10. There existsC > 0 depending only on d, α, β, σ1, σ2, γ1, γ2, such that with probability
at least 1− 6/n, both of the following inequalities hold:

sup
b∈B

∣∣∣∣∫ ψ∗
b (v) d(P

A(b) − PA(b)
n )(v)

∣∣∣∣ ≤ C(logm)
2

2∧α∧βn−1/2

sup
b∈B

∣∣∣∣∫ ψb(u) d(P
U − PU

m)(u)

∣∣∣∣ ≤ C(logm)
2

2∧α∧βm−1/2.

Proof. Since adding a constant toψ∗
b orψb will not change the value of

∫
ψ∗
b (v) d(P

A(b)−PA(b)
n )(v)

or
∫
ψb(u) d(P

U − PU
m)(u), we assume ψ∗

b (0) = ψb(0) = 0 with out loss of generality. We first
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note that E ∥(b∗ − b)Σ1/2S∥2 = ∥b∗ − b∥2Σ ≤ 1, for any b ∈ B. By Lemma 2.15 and the anti-
concentration inequality of ε given in (2.12), there exists a constant M1 > 0 depends on γ1 and
γ2 such that the density function of A(b), write as fA(b), have the anti-concentration inequality

fA(b)(v) ≥M1 exp
(
−2γ2∥v∥2

)
, for all ∥v∥ ≥ 2.

Then by recalling that PU ∼ (
√
2d, 2)-sub-Weibull, we apply Manole and Niles-Weed [MN24,

Theorem 11]3 to obtain that ∥∇ψ∗
b (v)∥ ≤ C(∥v∥ + 1) for all v ∈ Rd, where C > 0 is a constant

depending on d, γ1, γ2. Therefore, applying mean value theorem, we have |ψ∗
b (v)| ≤ C(∥v∥+1)2

for all v ∈ Rd.
Define Ω1 := {max1≤i≤n ∥(εi, Si)∥ ≤ κ} and Eb := {Tb(s, e) : (s, e) ∈ Bd+p0,κ } for each fixed

b ∈ B. From the proof of Lemma 2.8, we have P(Ω1) ≥ 1− 2/n. Then on Ω1 we can obtain that

sup
b∈B

∣∣∣∫
Rd\Eb

ψ∗
b (v) d(P

A(b) − PA(b)
n )(v)

∣∣∣ = sup
b∈B

∣∣∣∫
Rd+p\Bd+p

0,κ

ψ∗
b ◦ Tb(s, e) d(P S ⊗ P ε)(s, e)

∣∣∣
≤ C sup

b∈B

∫
Rd+p\Bd+p

0,κ

(1 + ∥Tb(s, e)∥)2 d(P S ⊗ P ε)(s, e)

≤ C sup
b∈B

∫
Rd+p\Bd+p

0,κ

(1 + ∥(s, e)∥)2 d(P S ⊗ P ε)(s, e)

≤ C ′

n
,

for some constantC ′ > 0 depending on d, α, β, σ1, σ2, γ1, γ2, where we used the fact thatP (S,ε) ∼
(ρ, α ∧ β)-sub-Weibull and Lemma 2.14 in the final inequality. It therefore remains to control

G := sup
b∈B

∣∣∣∫
Eb

ψ∗
b (v) d(P

A(b)−PA(b)
n )(v)

∣∣∣ = sup
b∈B

∣∣∣∫
Bd+p
0,κ

ψ∗
b ◦Tb(s, e) d(P S⊗P ε−P S

n ⊗P ε
n)(s, e)

∣∣∣.
To simplify the notation, define the centered function

ψ̄∗
b (s, e) := ψ∗

b ◦ Tb(s, e)1{∥(s, e)∥ ≤ κ} − E[ψ∗
b ◦ Tb(S, ε)1{∥(S, ε)∥ ≤ κ}],

then it follows that ∥ψ̄∗
b∥∞ ≤ 2C(κ + 1)2 ≤ C(logm)

1
2∧α∧β . In this notation, we have G =

supb∈B |n−1
∑

i∈[n] ψ̄
∗
b (Si, εi)|. By Markov’s inequality, we then have

E(G) =
∫ +∞

0

P(G ≥ t) dt ≤ n−1/2 + C

∫ +∞

n−1/2

(logm)
2

2∧α∧β

nt2
dt ≲

(logm)
2

2∧α∧β

√
n

. (2.70)

We now claim that G, when viewed as a function of (s1, e1), . . . , (sn, en), satisfies the bounded
difference property [see e.g. Wai19, (2.32)]. By symmetry, it suffices to consider a perturbation
on (s1, e1). Define v = (vi)

n
i=1, v

′ = (v′i)
n
i=1 where each vi = (si, ei), v

′
i = (s′i, e

′
i) ∈ Rd+p, such

3In the original Theorem 11 of [MN24], a regular condition is required on the density function of the source proba-
bility measure. Nevertheless, it is indeed sufficient to reestablish the result by merely assuming an anti-concentration
inequality on the density function of the source probability measure, as we have proven for fA(b) here.
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that vi = v′i for any i ̸= 1. We have

sup
b∈B

∣∣∣∣ 1n
n∑
i=1

ψ̄∗
b (vi)

∣∣∣∣− sup
b∈B

∣∣∣∣ 1n
n∑
i=1

ψ̄∗
b (v

′
i)

∣∣∣∣ ≤ sup
b∈B

{∣∣∣∣ 1n
n∑
i=1

ψ̄∗
b (vi)

∣∣∣∣− ∣∣∣∣ 1n
n∑
i=1

ψ̄∗
b (v

′
i)

∣∣∣∣}

≤ 1

n
sup
b∈B

∣∣∣ψ̄∗
b (v1)− ψ̄∗

b (v
′
1)
∣∣∣ ≤ 2C(logm)

1
2∧α∧β

n
,

estbalishing, the bounded difference property for G. Thus by McDiarmid’s inequality [see e.g.
Wai19, Corollary 2.21], we obtain that the event

Λ1 :=
{
G ≤ EG+

√
2C(logm)

2
2∧α∧β

√
n

}
,

occurs with probability at least 1− 1/m.
Thus, working on the event Ω1 ∩ Λ1, we deduce from (2.70) that

sup
b∈B

∣∣∣∫ ψ∗
b (v)d(P

A(b) − PA(b)
n )(v)

∣∣∣ ≤ C(logm)
2

2∧α∧β

√
n

+
C ′

n
≤ C(logm)

2
2∧α∧β

√
n

,

for some constant C > 1 depends on d, α, β, γ1, γ2, σ1, σ2, which completes the first claim of the
lemma.

For the second claim, in order to bound
∫
ψb(u) d(P

U − PU
m)(u), we notice that the anti-

concentration property of PU holds due to the Gaussian assumption. Thus Manole and Niles-
Weed [MN24, Theorem 11] implies that ∥∇ψb(u)∥ ≤ C̃(1 + ∥u∥)

2
α∧β for some C̃ > 0 depending

on d, σ1, σ2, α, β, and it follows that |ψb(u)| ≤ C̃(1 + ∥u∥)
2

α∧β
+1.

Define Ω2 := {max1≤i≤m ∥Ui∥ ≤ γ}. From the proof of Lemma 2.8 again, we have P(Ω2) ≥
1− 2/n. Working on Ω2, we have

sup
b∈B

∣∣∣∣∫
Rd\B0,γ

ψb(u)d(P
U − PU

m)(u)

∣∣∣∣ = sup
b∈B

∣∣∣∣∫
Rd\B0,γ

ψb(u)dP
U(u)

∣∣∣∣
≤ C̃

∫
Rd\B0,γ

(1 + ∥u∥)
2

α∧β
+1dPU(u) ≤ C̃

m
,

for some constant C̃ > 0 depending on d, α, β, σ1, σ2. Now, defining G̃ := supb∈B
∣∣∫

B0,γ
ψbd(P

U−
PU
m)

∣∣, by the same argument as in the proof of the first part of this lemma, there is an event Λ2

with probability at least 1−m−1, such that on Ω2 ∩ Λ2, we have

sup
b∈B

∣∣∣∫ ψb(u)d(P
U − PU

m)(u)
∣∣∣ ≤ G̃+

C̃ ′

m
≤ EG̃+

C̄(logm)
2

2∧α∧β

√
m

+
C̃

m
≤ C̄(logm)

2
2∧α∧β

√
m

,

(2.71)

for C̄ > 0 depending only on d, α, β, σ1, σ2, γ2.
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Lemma2.11. There existsC > 0 depending only on d, α, β, σ1, σ2, γ1, γ2, such that with probability
at least 1− 5/n, we have

sup
b∈B

∣∣∣∣∫ ∥v∥2 d
(
PA(b)
n − PA(b)

)
(v)

∣∣∣∣ ≤ C(logm)
2

2∧α∧βn−1/2,∣∣∣∣∫ ∥u∥2 d
(
PU − PU

m

)
(u)

∣∣∣∣ ≤ C

√
logm

m
.

Proof. Observe that the only property ofψ∗
b that we used in the first part of the proof of Lemma 2.10

is that ∥∇ψ∗
b (v)∥ ≤ C(∥v∥ + 1) for all b ∈ B and v ∈ Rd. The same property is satisfied by the

function v 7→ ∥v∥2. Hence, a very similar proof to that of Lemma 2.10 will establish the first
claim here.

As for the second inequality, since Ui
i.i.d.∼ N (0, Id), we have

∑m
i=1 ∥Ui∥2 ∼ χ2

md. By Laurent
and Massart [LM00, Lemma 1] we deduce that

P
(∣∣∣ 1
m

m∑
i=1

∥Ui∥2 − E ∥U∥2
∣∣∣ ≥ √

2d logm

m
+

2 logm

m

)
≤ 2

m
,

which implies the second claim.

Proof of Theorem 2.2. Recalling that in the regime of (2.6) event Θ holds with probability at least
1− 4(log n)−1, and working on Θ we have b̂ ∈ B. Thus there exists M > 0 depending only on d,
α, β, σ1, σ2, γ1, γ2 such that with probability at least 1− 33(log n)−1, we have

L(b̂)− L(b∗) ≤ 2 sup
b∈B

|L(b)− Ln,m(b)|

≤
∣∣∣ 1
m

m∑
i=1

∥Ui∥2 − E ∥U∥2
∣∣∣+ sup

b∈B

∣∣∣ 1
n

n∑
i=1

∥Tb(Si, εi)∥2 − E ∥Tb(Si, εi)∥2
∣∣∣

+ sup
b∈B

∣∣∣W2
2 (P

A(b), PU)−W2
2 (P

A(b)
n , PU

m)
∣∣∣

≤M(logm)
8

2∧α∧β

(√
p

n
+

1

n2/d

)
, (2.72)

where the second inequality uses the definition of ⟨⟨·, ·⟩⟩W2 and in the final inequality, we used
Lemma 2.11 to control the first two terms and Proposition 2.4 for the last term.

On the other hand, by the lower bound developed in (2.31) and Lemma 2.12 we have for
r := ⟨⟨P ε, PU⟩⟩W2 that

L(b̂)− L(b∗) ≥
√
r2 + ∥b∗ − b̂∥2Σ − r ≥ 1

2
(1 + r2)−1/2∥b∗ − b̂∥2Σ. (2.73)

Combining (2.72) with (2.73), we obtain that

∥b∗ − b̂∥Σ ≤M(logm)
4

2∧α∧β

{(
p

n

)1/4

+
1

n1/d

}
, (2.74)

with probability at least 1− 33(log n)−1. Here we close the proof. □
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2.6 Ancillary results
Lemma 2.12. For any a ≥ 0, we have inequality

√
a+ x2 ≤

{
x2

2
√
a
+
√
a , if 0 ≤ x ≤ 1,

(x− 1) + 1
2
√
a
+
√
a , if x > 1.

,

and
√
a+ x2 ≥

{
x2

2
√
a+1

+
√
a , if 0 ≤ x ≤ 1,

x−1√
a+1

+ 1
2
√
a+1

+
√
a , if x > 1.

Proof. Write

√
a+ x2 =

∫ x

0

t√
a+ t2

dt+
√
a.

Thus the first inequality can be obtained by utilizing t/
√
a+ t2 ≤ t/

√
a and t/

√
a+ t2 ≤ 1 in

the case of 0 ≤ t ≤ 1 and t ≥ 1 respectively. The second inequality follows by noting that
t/
√
a+ t2 ≥ t/

√
a+ 1 when 0 ≤ t ≤ 1 and t/

√
a+ t2 ≥ 1/

√
a+ 1 when t ≥ 1.

Lemma 2.13. There exist independent random vectors Z and ε such that PZ , P ε ∈ P2(Rd) ∩
Pac(Rd) such that ⟨⟨Z + ε, U⟩⟩2W2

= ⟨⟨Z,U⟩⟩2W2
+ ⟨⟨ε, U⟩⟩2W2

.

Proof. Consider independent random vectors Z ∼ N (0,Σ) and ε ∼ N (0,Γ). By the same
argument as in (2.30), we have

⟨⟨Z + ε, U⟩⟩W2 = Tr
(
(Σ + Γ)1/2

)
⟨⟨Z,U⟩⟩W2 = Tr

(
Σ1/2

)
⟨⟨ε, U⟩⟩W2 = Tr

(
Γ1/2

)
.

Hence, the desired result hold if we take Σ = σ2Id and Γ = γ2Id.

Proposition 2.5. Let X be a random vecotor. Then the following properties are equivalent:

(i) There exists σ > 0 such that P(∥X∥ ≥ x) ≤ 2e−
1
2
(x/σ)β for all x ≥ 0.

(ii) There exists Kσ > 0 such that {E∥X∥k}1/k ≤ Kσk
1/β .

(iii) There exists K ′
σ > 0 such that E exp

{(
(λ∥X∥)β

)}
≤ exp

{(
(λK ′

σ)
β
)}

for all |λ| ≤ 1/K ′
σ.

(iv) X follows the (σ, β)-sub-weibull distribution.

The proof follows by Vladimirova et al. [Vla+20, Theorem 2.1].

Proposition 2.6. For p1, p2 ∈ N, let X ∈ Rp1 , Y ∈ Rp2 be two independent sub-Weibull random
vectors with parameter (σ1, α) and (σ2, β) respectively. Then the following statements holds:

(i) For matrices A ∈ Rd×p1 and B ∈ Rd×p2 , there exists σ > 0 depending only on σ1, σ2, ∥A∥op,
∥B∥op such that AX +BY ∼ (σ, α ∧ β)-sub-Weibull.
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(ii) There exists σ > 0 depending only on σ1, σ2 such that the concatenation of two random vectors
Z := (X, Y ) ∈ Rp1+p2 is a sub-Weibull random vector with parameter (σ, α ∧ β).

Proof. (i) Suppose Kσ1 and Kσ2 are the induced constants of X and Y by the part (ii) of Proposi-
tion 2.5. Then it follows that(

E ∥AX +BY ∥k
)1/k ≤ (E ∥AX∥k)1/k + (E ∥BY ∥k)1/k

≤ ∥A∥op(E ∥X∥k)1/k + ∥B∥op(E ∥Y ∥k)1/k

≤ ∥A∥op ∨ ∥B∥op ·
(
Kσ1k

1/α +Kσ2k
1/β

)
≤ 2(∥A∥op ∨ ∥B∥op) · (Kσ1 ∨Kσ2)k

1/(α∧β).

This proves that AX+BY satisfies part (ii) in the Proposition 2.5 thus the conclusion follows by
the equivalence of part (ii) and (iv).

(ii) For any integer k ≥ 1, we have(
E ∥(X, Y )∥k

)1/k ≤ (
E(∥X∥+ ∥Y ∥)k

)1/k
≤

(
E ∥X∥k

)1/k
+
(
E ∥Y ∥k

)1/k ≤ (Kσ1 ∨Kσ2)k
1/(α∧β),

where the sub-Weibull assumption on X and Y have been exploited. The conclusion follows by
employing Proposition 2.5.

Lemma 2.14. If X is a (σ, β)-sub-Weibull random vector as defined in (2.11), then for any s > 0,
there exists C > 0, depending on s, σ, β, such that E

(
∥X∥s 1{∥X∥ ≥ t}

)
≤ Ce−

1
4
(t/σ)β .

Proof. We have

E
(
∥X∥s 1{∥X∥ ≥ t}

)
= E

[
∥X∥s 1

{
e

1
4
(∥X∥/σ)β ≥ e

1
4
(t/σ)β

}]
≤ E

{
∥X∥se

1
4
(∥X∥/σ)βe−

1
4
(t/σ)β

}
≤ e−

1
4
(t/σ)β

{
E ∥X∥2s

}1/2
{
E e

1
2
(∥X∥/σ)β

}1/2

≤ 21/2e−
1
4
(t/σ)β

{
E ∥X∥2s

}1/2
,

where we used the definition of X being (σ, β)-sub-Weibull in final step. The desired bound
follows since by Proposition 2.5, we have E∥X∥2s ≤ C for some constant C that depends on
s, σ, β.

Lemma 2.15. Suppose X, Y are independent d-dimensional random vectors with finite second mo-
ment. If X follows an absolutely continuous distribution with density function fX which admits the
following anti-concentration inequality for some constant γ1, γ2 > 0:

fX(x) ≥ γ1 exp
(
−γ2∥x∥2

)
, ∀ ∥x∥ ≥ E ∥Y ∥2.

Then there exists a constant K1 depends on γ1 and γ2 such that the density function of V := X +Y ,
write as fV , satisfying

fV (v) ≥ K1 exp
{
(−2γ2∥v∥2)

}
, ∀ ∥v∥ ≥ 2E ∥Y ∥2.

68



Chapter 2 Multiple-output quantile regression via optimal transport 2.6 Ancillary results

Proof. Write M2 := E ∥Y ∥2 < +∞. For all ∥v∥ ≥ 2M2, we have

fV (v) =

∫
fX(v − y)fY (y)dy ≥

∫
∥y∥≤M2

γ1 exp
{(

−γ2∥v − y∥2
)}
fY (y)dy

≥
∫
∥y∥≤M2

γ′1 exp
{(

−2γ2∥v∥2
)}
fY (y)dy ≥ γ′1

(
1− 1

M2

)
exp

{(
−2γ2∥v∥2

)}
,

where γ′1 = γ1 exp(−2γ2M
2
2 ) and the last inequality is followed by the Markov inequality. Thus

the result holds by letting K1 = γ′1
(
1− 1

M2

)
.

Lemma 2.16. Let X ,Y ⊆ Rd are Borel sets such that L2 is bounded on X × Y , i.e. ∥L2∥∞ :=
sup(x,y)∈X×Y L2(x, y) < +∞. Then for any µ ∈ P2(X ) and ν ∈ P2(Y) we have

inf
{
Jµ,ν(φ, ψ) : (φ, ψ) ∈ Φ̃}
= inf

{
Jµ,ν(φ, ψ) : (φ, ψ) ∈ Φ̃,−∥L2∥∞ ≤ φ− ∥ · ∥2/2 ≤ 0, 0 ≤ ψ − ∥ · ∥2/2 ≤ ∥L2∥∞},

where Φ̃ := {(φ, ψ) ∈ L1(X )× L1(Y) : φ(x) + ψ(y) ≥ xTy, ∀(x, y) ∈ X × Y}.

Proof. Note that by the argument same as (2.17) we have

inf
{
Jµ,ν(φ, ψ) : (φ, ψ) ∈ Φ̃}

=

∫
X

∥x∥2

2
dµ(x) +

∫
Y

∥y∥2

2
dν(y)− sup

{
Jµ,ν(φ, ψ) : (φ, ψ) ∈ Φ2

}
, (2.75)

where Φ2 := {(φ, ψ) ∈ L1(X )× L1(Y) : φ(x) + ψ(y) ≤ L2(x, y), ∀(x, y) ∈ Rd ×Rd}. Note by
Villani [Vil21, Remark 1.13], we may restrict the supremum in the right-hand side of (2.75) over
some bounded functions:

sup
{
Jµ,ν(φ, ψ) : (φ, ψ) ∈ Φ2

}
= sup

{
Jµ,ν(φ, ψ) : (φ, ψ) ∈ Φ2, 0 ≤ φ ≤ ∥L2∥∞, −∥L2∥∞ ≤ ψ ≤ 0

}
. (2.76)

By Villani [Vil09, Theorem 5.10] we may further impose thatφ be c-concave andψ = φc. Suppose
(φ0, φ

c
0) be a solution to the right-hand side of (2.76). Define φ̃ := ∥·∥2/2−φ0, ψ̃ := ∥·∥2/2−φc0.

Then by (2.75) we have

inf
{
Jµ,ν(φ, ψ) : (φ, ψ) ∈ Φ̃} =

∫
X
φ̃(x)dµ(x) +

∫
Y
ψ̃(y)dν(y). (2.77)

Moreover, note

φ̃(x) = ∥x∥2/2− φ0(x) = ∥x∥2/2− inf
y∈Y

{c(x, y)− φc0(y)} = sup
y∈Y

{xTy − (∥y∥2/2− φc0(y))},

which implies that (φ̃, ψ̃) ∈ Φ̃. Combine this with (2.77), we proved that (φ̃, ψ̃) is an optimal
solution to the left-hand side of (2.75). Finally, by the boundedness of φ0 and φc0, we have

0 ≤ ∥x∥2/2− φ̃(x) ≤ ∥L2∥∞ and − ∥L2∥∞ ≤ ∥y∥2/2− ψ̃(y) ≤ 0,

as desired.
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Theorem 2.5. [FG15, Theorem 1] Let X ∼ PX be a probability measure on Rd such that Mℓ :=
E ∥X∥ℓ < +∞ with ℓ ∈ (2,+∞). If PX

n is the corresponding empirical distribution, then there
exists a constant C > 0 depending only on d and ℓ such that for all n ≥ 1,

E
[
W2

2 (P
X , PX

n )
]
≤ CM

2/ℓ
ℓ τn(d, ℓ), (2.78)

where

τn(d, ℓ) :=


n− 1

2 if d < 4

n− 1
2 log(1 + n) if d = 4

n− 2
d if d > 4

+


n− 1

d if ℓ > 4

n− 1
2 log(1 + n) if ℓ = 4

n
2−ℓ
ℓ if 2 < ℓ < 4.

2.7 Spatial reference

In this section, we derive the MCQR loss function under reference distribution U [−1, 1], which
may provide an intuitive example for the verification of Proposition 2.1. In one dimension, the
traditional rank and quantile can be understood as a pair of optimal transport maps between the
distribution of interest X ∼ P and the uniform distribution U ∼ U [0, 1]. When P does not
assign mass to sets with Hausdorff dimension 0, the corresponding distribution function F and
its inverse map Q := F−1 serve as the corresponding optimal transport map. This concept can
be generalized to other reference distributions, for instance, U [−1, 1]. In this case, the spatial
distribution function Fsp(·) := 2F (·) − 1 takes on the role of F in the previous case. Moreover,
the corresponding check function needs to be modified as

ρspτ (X − θ) := (1 + τ)(X − θ)− 2(X − θ)1{X − θ < 0}, ∀τ ∈ [−1, 1].

Suppose V ∼ U [−1, 1], then the composite quantile regression optimization becomes

E
∫ 1

−1

ρspτ
(
Y − β⊤X − q(τ)

)
· 1
2
dτ = E

∫ 1

−1

(
Y − β⊤X − q(τ)

)−
dτ +

∫ 1

−1

∫ −1

τ

1

2
q(τ) dtdτ

= E max
t∈[−1,1]

∫ 1

t

−
(
Y − bX − q(τ)

)
dτ +

∫ 1

−1

∫ 1

t

1

2
q(τ) dτdt

= E max
t∈[−1,1]

(
−(1− t)(Y − bX) + ϕ(t)

)
+ Eϕ(V )

= E max
t∈[−1,1]

(
t(Y − bX) + ϕ(t)

)
+ Eϕ(V ),

where ϕ(t) =
∫ 1

t
q(τ)dτ. Thus, applying the same argument as Lemma 2.2 we can see that the

composition quantile regression estimator of b∗ is once again

b∗ = argmin⟨⟨P Y−bX , P V ⟩⟩W2 .

This gives some intuition on Proposition 2.1. However, if choose the standard normal distribution
as the reference distribution, we may not be able to find a straightforward optimal transport map
as F or Fsp, but Proposition 2.1 demonstrates the validity of this extension.
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2.8 Spatial quantile
The concept of the spatial (or geometric) quantile was initially introduced by [Cha96]. Uniquely
characterizing the underlying probability distribution as a special case of M-quantile, as demon-
strated in [Kol97, Theorem 2.5], this quantile permits a seamless extension to the regression
framework [Cha03] and functional quantile regression [CC14; CC19]. A more recent develop-
ment involves an extension to the hypersphere, as explored by Konen and Paindaveine [KP23].

The definition of Spatial quantile starts from rewriting the check function ρτ (·) as

ρτ (z) =
1

2

(
|z|+ (2τ − 1)z

)
=

1

2
(|z|+ vz), for any z ∈ R,

with v = 2τ − 1. Thus a natural extension of the check function to the multi-dimensional case is
by substituting the absolute value function by the L1-loss function:

Φv(z) :=
1

2
(∥z∥+ v⊤z),

where v = τu, and u ∈ Sd−1. This extension of the check function immediately leads to the
following definition of spatial quantile:

Definition 2.3. Suppose Y ∼ PY is a random variable on Rd (d ≥ 1). Then for any τ ∈ [0, 1]
and u ∈ Sd−1, the τu-spatial quantile of P Y is defined as

Qτu = argmin
y∈Rd

EΦτu(Y − y). (2.79)

Note the solution of (2.79) are such that

E
( Y −Qτu

∥Y −Qτu∥
)
= −τu.

Intuitively speaking, this indicates thatQτu defines a point inRd such that the average unit vector
from it to other random samples should be τu.

The generalization to quantile regression setting is simply by applying the spatial quantile
definition to Y − b∗X − a, where X ∈ Rp is the covariate vector, b∗ ∈ Rd×p is the regression
coefficient and a is the intercept term. Specifically, for fixed τ ∈ [0, 1] and u ∈ Sd−1,

(aτu, bτ,u) = argmin
b∈Rd×p, a∈Rd

EΦτu(Y − bX − a).

Therefore, given observations (Y1, X1), . . . , (Yn, Xn) satisfying equations

Yi = b∗Xi + εi, i = 1, . . . , n,

for some random residue terms εi’s that are independent with with Xi’s, the spatial quantile
estimator of b∗ can be obtained by

(b̂(sp), â(sp)τu ) = argmin
b∈Rd×p, a∈Rp

1

n

n∑
i=1

Φτu(Yi − bXi − a).

Therefore, the optimizer can be obtained by applying classical convex optimization algorithms.
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Chapter 3

Coverage Correlation Coefficient: Beyond
Functional Correlation

3.1 Introduction
Chatterjee’s correlation has been recently developed [Cha21] to measure the dependence rela-
tionship between two univariate random variablesX and Y . More precisely, given n independent
copies (X1, Y1), . . . , (Xn, Yn) of (X, Y )with probability distributionP (X,Y ), and assuming no ties
in (Xi)1≤i≤n and (Yi)1≤i≤n, we can rearrange the data as (X(1), Y(1)), . . . , (X(n), Y(n)) such that
X(1) < · · · < X(n). Chatterjee’s correlation is then defined as

ξ(X,Y )
n := 1−

∑n−1
i=1 |ri+1 − ri|
(n2 − 1)/3

, (3.1)

where ri := #{j : Y(j) ≤ Y(i)} is the rank of Y(i). Similarly to Spearman’s ρ and Kendall’s
τ [Ken38; Spe04], Chatterjee’s correlation depends only on the ranks of Xi’s and Yi’s and is
hence invariant under monotone transformations of the data. However, unlike Spearman’s and
Kendall’s correlation, which is mainly used in testing against an alternative of a monotone rela-
tionship between X and Y , Chatterjee’s correlation is powerful for testing a generic functional
relationship between X and Y .

Given its simplicity and nonparametric nature, Chatterjee’s correlation has been applied across
various practical fields [e.g. Sad22; Suo+24], despite being a relatively recent development. That
said, this new correlation is not without its limitations. For instance, the definition in (3.1) is
asymmetric in X and Y . Chatterjee [Cha21] claimed that this is a feature of the correlation,
which detects dependence of Y as a function of X and not vice versa, and can be symmetrised
by taking the maximum of ξX,Yn and ξY,Xn . However, this means that Chatterjee’s correlation may
not be powerful in detecting dependence between X and Y mediated through their respective
functional dependence on some hidden variable H . Another shortcoming of ξ(X,Y )

n is that it only
computes correlation of scalar random variables X and Y . Azadkia and Chatterjee [AC21] has
generalised Chatterjee’s correlation to settings of multivariate X , but the response variable Y
remains univariate. Other extensions are also possible [DGS20; AF24] (see Section 3.1.1 a re-
view), but none of them enjoy a simple and distribution-free asymptotic theory as Chatterjee’s
correlation coefficient.

73



Chapter 3 Coverage Correlation Coefficient: Beyond Functional Correlation 3.1 Introduction

Before moving on, let us consider an alternative geometric interpretation of Chatterjee’s cor-
relation. Figure 3.1 shows a few different (X, Y ) distributions and the corresponding Chatterjee’s
correlation statistics and p-values. The bottom panels plots the ordered X ranks (which are sim-
ply 1, 2, . . . , n) against the corresponding Y ranks r1, . . . , rn. We observe that the numerator
in (3.1) is approximately the total segment length in each line plot, or more precisely, it is the
total area in the [0, n]2 square covered by

n−1⋃
i=1

(
[i− 1, i]×

[
min{ri, ri+1},max{ri, ri+1}

])
.

For independent X and Y (first column of Figure 3.1), the Y -rank against X-rank line plot is
highly ‘space-filling’. When E[Y | X] is a function of X (second and third column of Figure 3.1),
the corresponding line plot has shorter total length and the Chatterjee’s correlation statistics are
essentially capturing the deficiency in the space covered as compared to the independent case.
The last column of Figure 3.1 gives an interesting example whereX and Y are defined as functions
of U with some perturbations, but the Chatterjee’s correlation is unable to tell it apart from the
independent case.
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n = 0.24 ξ
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n = 0.0091

p-value = 0.55 p-value < 10−16 p-value < 10−16 p-value = 0.65

Figure 3.1: Chatterjee’s correlation of various (X, Y ) pairs using a sample of n = 1000 observa-
tion pairs. Data generating mechanism are as follows — first column: X, Y iid∼ N (0, 1); second
column: X ∼ N (0, 1) and Y = sin(10X) + 0.5ϵ where ϵ ∼ N (0, 1) ⊥⊥ (X, Y ); third column:
X ∼ N (0, 1) and Y = XB + ϵ(1 − B), where (B, ϵ) ∼ Bernoulli(1/2) ⊗ N (0, 1) ⊥⊥ (X, Y );
fourth column: X = U sin(10πU)+0.03ϵX and Y = U cos(10πU)+0.03ϵY , where (U, ϵX , ϵY ) ∼
Unif[0, 1]⊗N (0, 1)⊗N (0, 1) ⊥⊥ (X, Y ). For each column, the top panel shows the scatter plot
and the bottom panel shows the line plot of ordered X ranks against the corresponding Y ranks.

Motivated by the above geometric interpretation of Chatterjee’s correlation, we propose a
coverage correlation coefficient of random vectorsX ∈ RdX and Y ∈ RdY with dX , dY ∈ N, based
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on the (multivariate) ranks of (Xi)1≤i≤n and (Yi)1≤i≤n that is powerful against the alternative
where X and Y possess an implicit dependence. Intuitively speaking, the proposed correlation
coefficient measures the uncovered volume in [0, 1]dX+dY when small cubes of volume 1/n, cen-
tered at the multivariate ranks of (Xi, Yi), are used to cover the space.

In the case of d-dimensional Euclidean space, d ≥ 2, there is no canonical definition of rank
since ordering becomes less intuitive when dealing with multivariate variables. Although various
concepts have been considered, e.g. depth-based ranks [Tuk75; LS93; ZS00], spatial ranks [MO95;
Cha96; Kol97], componentwise ranks [Hod55; Bic65], Mahalanobis ranks [HP02b; HP02a], but
none of them enjoy distribution-freeness while the traditional rank notion on real line does.
Monge-Kantorovich (MK) rank , a concept of multivariate rank proposed in Chernozhukov et al.
[Che+17], Hallin [Hal17], and Hallin et al. [Hal+21] provides a new insight of traditional ranks
from the perspective of optimal transport map. Many desirable properties of univariate rank are
enjoyed by this new concept including distribution-freeness.

The MK ranks for (Xi)
n
i=1 and (Yi)

n
i=1are defined through their optimal transport to respective

sets of reference points U = {u1, . . . , un} and V = {v1, . . . , vn}. Various choices have been used
in the literature [DS23; Hal+21; BSS18]. In this work, we consider two types of reference points:

(1) Regular grid: suppose there exists mX ,mY ∈ N such that n = mdX
X = mdY

Y , let U =∏dX
i=1{1/(mX +1), 2/(mX +1) . . . ,mX/(mX +1)} and V =

∏dY
i=1{1/(mY +1), 2/(mY +

1) . . . ,mY /(mY + 1)}.

(2) Uniform random samples: let U = {Ui}ni=1 and V = {Wi}ni=1, where U1, . . . , Un and
W1, . . . ,Wn are independent i.i.d. samples from uniform distributions Unif([0, 1]dX ) and
Unif([0, 1]dY ), respectively.

Specifically, define

πX,⋆ := argmin
π∈Sn

1

n

n∑
i=1

∥uπ(i) −Xi∥2 and πY,⋆ := argmin
π∈Sn

1

n

n∑
i=1

∥vπ(i) − Yi∥2, (3.2)

where ∥ · ∥ denotes the Euclidean norm, Sn denotes the set of all permutations of [n], and ⋆ ∈
{Reg,Rand} indicates whether the U and V are chosen to be a regular grid (⋆ = Reg) or uniform
random samples (⋆ = Rand). Then the empirical multivariate rank for Xi and Yi is

R̂X,⋆(Xi) := uπX,⋆(i) and R̂Y,⋆(Yi) := vπY,⋆(i), (3.3)

respectively. We further write

R̂⋆
i := (R̂X,⋆(Xi), R̂

Y,⋆(Yi)). (3.4)

For any d-dimensional cube P with edge length lP ∈ R+, we can construct a d-torus TP by
gluing opposite faces together. Then the ℓ∞-norm on TP is equivalent to the following distance
on P :

d∞(u, v) := inf
z∈Zd

∥u− v − zlP∥∞, for any u, v ∈ P . (3.5)

Then we define d-dimensional subcube centered at w ∈ P with the periodic boundary condition
and edge length 2r as:

B∞(w, r;P ) := {u ∈ P : d∞(w, u) ≤ r}.
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For any s ∈ N, when P = [0, 1]s, we also write Bs
∞(w, r) := B∞(w, r; [0, 1]s) as shorthand.

Write d := dX + dY and vol ≡ vold for the d-dimensional Lebesgue measure, for γ ∈ (0, 1), we
define

V ⋆
n,γ := 1− vol

( n⋃
i=1

Bd
∞(R̂⋆

i , γ)
)

(3.6)

to be the uncovered volume in the d-dimensional unit cube outside subcubes of radius γ centred
at the empirical ranks. We will mostly be interested in setting γ := 1

2n1/d so that each subcube
has volume of 1/n. We write V ⋆

n = V ⋆
n,γ for this specific choice of γ. The empirical coverage

correlation coefficient between samples X1, . . . , Xn and Y1, . . . , Yn is then defined as

κX,Y ;⋆
n :=

V ⋆
n − e−1

1− e−1
= 1−

vol
(⋃n

i=1B
d
∞(R̂⋆

i , (1/2)n
−1/d)

)
1− e−1

, (3.7)

with ⋆ ∈ {Reg,Rand}. It is shown in Theorem 3.1 that when dX = dY = 1, for both regular
grid reference points and uniform random samples reference points, the coverage correlation
coefficient (3.7) consistently estimate the following f -divergence (see Definition 3.1):

κX,Y := Df (P
(X,Y ) ∥PX ⊗ P Y ) (3.8)

with f(x) = (e−x − e−1)/(1− e−1) for x ∈ R.
We summarise several key features of the coverage coefficient of correlation κX,Y ;⋆

n as follows:

1. It generalises the ”space-filling” geometric intuition of Chatterjee’s correlation coefficient
to multivariate settings, preserving interpretability while extending its application to com-
plex dependence structures between random vectors.

2. When dX = dY = 1, it consistenly estimate a population quantity κX,Y that equals to 0
if and only if X is independent with Y , and equals to 1 if and only if P (X,Y ) is singular to
PX ⊗ P Y (see Lemma 3.1). Therefore, unlike Chatterjee’s correlation coefficient, κX,Y ;⋆

n is
not only capable to detect functional dependency, but also implicit functional correlation.
See Section 3.3 for numerical demonstrations.

3. A sub-gaussian concentration inequality is established for κX,Y ;Reg
n (see Proposition 3.2).

4. When X and Y are independent, κX,Y ;Rand
n allows a simple central limit theorem (CLT),

converging to a normal distribution with zero mean and an explicit variance formulation
that is independent of the underlying distribution of X and Y (see Theorem 3.3).

5. For univariate marginal distributions, we develop an algorithm with O(n log n) time com-
plexity (see Section 3.3.1), while in higher dimensions, the computational complexity of
this algorithm increases polynomially with dimension.

3.1.1 Related works
Dependency measurement has been a timeless problem in statistics. Since the classical concepts
of correlation coefficient proposed by Pearson [Pea20], Kendall [Ken38], and Spearman [Spe04],
the literature on measuring statistical dependence has expanded considerably, including, maximal
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correlation coefficient [Geb41; Koy87], kernel-based method [Gre+05b; Gre+07; SS14; Ram+15;
SKR23], coefficient based on pairwise distance [SR09; SRB07; HHG13], copulas based-method
[Skl59; SW81; DSS13; LHS13; Fuc24; GJT22; SDS24], coefficient based on Wasserstein distance
[NSM21; MS22; Wie22; MS20]. For a comprehensive survey we guide the readers to [TOS22], and
a survey more related to this work [Cha24].

A common issue of the methods mentioned above is that most of the coefficients do not
allow a simple distribution-free asymptotic theory. Hence, one need to resort to permutation-
based techniques to generate p-values, which can be computationally infeasible in the context of
multiple testing regime. Chatterjee [Cha21] proposed a rank-based correlation coefficient with
a simple form as the classicial coefficients, and thanks to the distribution-freeness of statistical
rank, it allows a simple asymptotic theory without any assumptions on the marginal distributions.
By leveraging the similar idea, Azadkia and Chatterjee [AC21] generalised the coefficient to the
setting of conditional dependence, and the distribution-free asymptotic theory is later obtained
in [SDH24]. A line of works on the power analysis of these two correlations coefficients are later
developed in [SDH22b; SDH24; CB20], and a modified version of Chatterjee’s coefficient which
attains near-optimal rates of power under several alternatives is proposed in [LH23].

However, since the Chatterjee’s coefficent depends on the rank of the marginal distributions,
thus does not allow a direct generalisation to measure the dependency between random vec-
tors. By leveraging the idea of k-nearest neighbor (kNN) (see also [BS19]), Deb, Ghosal, and Sen
[DGS20] proposed a kernel-based correlation coefficients under multivariate setting which, in the
univariate case, consistently estimate the same population quantity as (3.1). However, the power
of the statistic depends on the tuning parameter k, the optimal value of k may vary for different
alternatives (see Section 5 of [LH23]). More recently, Ansari and Fuchs [AF22] proposed a di-
rect multivariate extension of Chatterjee’s correlation; however, their coefficient does not enjoy
a distribution-free asymptotic theory. In this work, the proposed coverage correlation coefficient
generalises the geometric principle of Chatterjee’s coefficient to the multivariate setting, provid-
ing a simple distribution-free asymptotic theory without the need for any tuning parameters.

It is worth to mention that, in the case of univariate marginal distributions, a similar cov-
erage statistic was considered by Rudra, Zhou, and Wright [RZW17] even before the proposal
of Chatterjee’s correlation coefficient. Although their work recognised the effectiveness of the
coverage correaltion coefficient, they didn’t develop a consistency theorem or asymptotic theory
for the statistic. Moreover, their implementation requires a O(n2) time complexity, whereas our
approach achieves O(n log n) (see Section 3.3.1).

In stead of focusing on Chatterjee’s correlation coefficient, another line of work leverages the
concept of MK rank to adapt the classical independence test statistics or correlation coefficients
to the multivariate setting. Thanks for the distribution-freeness of the MK rank, the resulting
rank-based statistics typically enjoy a distribution-free asymptotic theory. Examples includes
Hoeffding’s D statistic [GS22], distance covariance [DS21; SDH22a], quadrant statistic, Spear-
man’s ρ and Kendall’s τ [Shi+24]. Moreover, Shi et al. [Shi+22] proposed a general framework
for designing consistent and distribution-free independence tests using the center-outward mul-
tivariate rank [Hal+21]. Please refer to [Han21] for a survey along this direction.

Notation: For probability spaces (X ,ΣX , µ) and (Y ,ΣY , ν), we write the product space as
(X × Y ,ΣX ⊗ ΣY , µ ⊗ ν). Let P(X ) be the set of all probability measures on X . For any
random variableX , write PX as the induced Borel probability measure. For any setA, we denote(
A
k

)
= {A′ ⊆ A : |A′| = k}. The sets of all positive and non-negative real numbers are denoted
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by R>0 and R≥0 respectively, and the sets of all positive and non-negative rational numbers are
denoted by Q>0, Q≥0, respectively. For any n ∈ N, let [n] = {1, 2, . . . , n}. We denote w→ as weak
convergence, p→ as convergence in probability and d→ as convergence in distribution.

3.2 Theory
In this section, we formally present the theoretical results for the converage correlation coefficient
κX,Y ;⋆
n (see definition in (3.7)). Specifically, when X, Y are both univariate random variables, we

show a consistency result for κX,Y ;⋆
n when ⋆ ∈ {Rand,Reg}. Moreover, when we choose the

regular grid reference distribution, i.e. ⋆ = Reg, a nonparametric concentration inequality is
established. For the case of multivariate marginal distributions, a distribution-free asymptotic
theorem under the null is obtained for κX,Y ;Rand

n .

3.2.1 Univariate case
In this section, we focus on the case that X and Y are univariate distributions. We show that
κX,Y ;⋆
n is a consistent estimator of an f -divergence between P (X,Y ) and PX ⊗ P Y as defined

in (3.8). Recall the definition of f -divergence:

Definition 3.1 ([PW25]). Let f : R → R ∪ {+∞} be a convex function with f(1) = 0. For
any two probability measures µ, ν on a space S , let dµ = h dν + dν⊥ be the Lebesgue–Radon–
Nikodym decomposition of µ with respect to ν, where h is ν-integrable and ν⊥ is singular with
respect to ν. The f -divergence between µ and ν is defined as

Df (µ ∥ ν) =
∫
S
f ◦ h dν + f ′(∞)ν⊥(S),

where f ′(∞) := limt→∞ t−1f(t) is the limit of the slope of f at infinity.

Now, we are ready to introduce the consistency result of the coverage correlation coefficient
when the marginal distributions are univariate, whose proof can be found at Section 3.4.1.

Theorem 3.1. Let (X1, Y1), . . . , (Xn, Yn) be independent and identically distributed from an ab-
solutely continuous distribution P (X,Y ) ∈ P(R2). Let PX and P Y be the marginal distributions of
X1 and Y1 respectively. Define f : R → R as f(x) = (e−x − e−1)/(1− e−1). Then, we have

κX,Y ;⋆
n

p−→ κX,Y := Df (P
(X,Y ) ∥PX ⊗ P Y ) as n→ ∞, (3.9)

for ⋆ ∈ {Reg,Rand}.

Another popular f -divergence for measuring independence is the mutual information, defined
as the KL-divergence (i.e. let f(x) = x log x in the definition of f -divergence) between the joint
distribution and the product of two marginal distribution. For instance, Berrett and Samworth
[BS19] considered a test statistic based on a k-NN estimator of the mutual information; however,
due to the lack of asymptotic distribution-freeness, their test relies on permutation-based tech-
niques to yield a p-value. In constrast, as we will see later, κX,Y ;⋆

n as an estimator of κX,Y enjoys
a distribution-free asymptotic theory (see Theorem 3.3).

The following proposition examines whether κX,Y , as a dependency measurement, satisfies
axioms considered in [Bor+23] (see also [MS19; Rén59]).
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Proposition 3.1. Supoose (X, Y ) ∼ P(X,Y ) ∈ P(R2) and PX , P Y are the corresponding marginal
probability measures. Let κ(X, Y ) be defined as (3.9), then we have

(i) κ(X, Y ) = 1 if and only if P (X,Y ) is singular to PX ⊗ P Y , and κ(X, Y ) = 0 if and only if
X is independent with Y ;

(ii) for a random variable Z ∼ PZ ∈ P(R), if X ⊥⊥ Y |Z , then we have κ(Z, Y ) ≥ κ(X, Y );

(iii) for any sequence of random variables Xn and Yn such that P (Xn,Yn) w→ P (X,Y ), we have
lim infn→∞ κ(Xn, Yn) ≥ κ(X, Y );

(iv) κ(X, Y ) = κ(Y,X).

The proof of the above are direct applications of basic properties of f -divergence (see Section
3.4.2). Unlike many existing dependency measurement, κX,Y is not maximised when X and Y
have a deterministic functional relationship, which is intentional. Because we would like to not
only detect the functional correlation betweenX and Y but also other types of more complicated
correlation, for instance, spurious correlation through confounding variables.

Remark 3.1 (Multivariate extension). Note that κX,Y is well-defined for any PX ∈ P(RdX ) and
P Y ∈ P(RdY ) with dX , dY ≥ 1. Then, the following information gain inequality is an immediate
result of Proposition 3.1(ii):

(ii’) for any random variable X,X ′ and Y , we have κ((X,X ′), Y ) ≥ κ(X, Y ).

This inequality is not mentioned in [Bor+23], but as an axiom for denpedency measurement
between random vectors in [GJT22].

Moreover, when considering the coverage correlation coefficient under the regular grid ref-
erence distribution, a sub-Gaussian concentration inequality can be proved for the vacancy area
defined in (3.6). The proof is deferred to Section 3.4.3.

Proposition 3.2. Let V Reg
n,γ be the vacancy area with regular grid reference distribution defined

in (3.6). Then we have for any t ≥ 0, there exists a fixed constant C > 0 independent with n and t
such that

P
(∣∣V Reg

n,γ − E(V Reg
n,γ )

∣∣ ≥ t
)
≤ 2e−Cnt

2

.

Note that Proposition 3.2 implies thatV Reg
n,γ concentrates around its mean with a

√
n-convergence

rate. Moreover, under the assumption of independent marginal distributions, Lemma 3.5 implies
that E(V Reg

n,γ ) = (1− n−1/2)
√
n + O(n−1/2). Therefore, when P (X,Y ) = PX ⊗ P Y , V Reg

n,γ concen-
trates around e−1 with a

√
n-convergence rate. We continue discussion on this aspect in the next

section.
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3.2.2 Multivariate case

Now, we turn to the case of multivariate marginal distributions, i.e. X ∼ PX ∈ P(RdX ), Y ∼
P Y ∈ P(RdY ) where dX , dY can be integers larger than 1. Note that the construction of regular
grid reference distribution requires there exists mX ,mY ∈ N such that n = mdX

X = mdY
Y , which

can be restricted in practice when dX , dY are larger than 1. Moreover, the regular grid on [0, 1]d

suffers from the ”curse of dimensionality” in the sense that its approximation error toUnif([0, 1]d)
is of order n−2/d, while the random samples from Unif([0, 1]d) is order n−1/2 [LP14]. Therefore,
we focus on developing theories for κX,Y ;Rand in the case of multivariate marginals.

We first establish the explicit mean and variance expression of κX,Y ;Rand (please refer to Sec-
tion 3.4.4 for the proof).

Theorem 3.2. Assuming X ∼ PX ∈ P(RdX ) and Y ∼ P Y ∈ P(RdY ), dX , dY ≥ 1, are indepen-
dent random vectors. Let d = dX + dY , then E(V Rand

n,γ ) = (1− 1/n)n and

Var(V Rand
n,γ ) =

n∑
i=2

(
n

i

)(
1− 2

n

)n−i(( 2

i+ 1

)d
n−i−1 − n−2i

)
.

Therefore, as n→ ∞ we have E(V Rand
n,γ ) → e−1 and Var(V Rand

n,γ ) = S2
n(1 + o(1)), where

S2
n =

n∑
i=2

(
n

i

)(
1− 2

n

)n−i( 2

i+ 1

)d
n−i−1. (3.10)

By the explicit form of (3.10), it is not hard to see that as n → ∞, Var(V Rand
n,γ ) scales at the

rate of n−1, in fact, we have

nVar(V Rand
n,γ ) → e−2

∞∑
i=2

1

i !

( 2

i+ 1

)d
, as n→ ∞.

Now we introduce a totally distribution-free asymptotic theory for κX,Y ;Rand
n when Y is in-

dependent with X (the proof is in Section 3.4.5).

Theorem 3.3. Let PX ∈ P(RdX ), P Y ∈ P(RdY ) and κX,Y ;Rand
n defined as (3.7). Then when X

and Y are independent, we have

n1/2κX,Y ;Rand
n

d−→ N (0, σ2), as n→ ∞, (3.11)

where σ2 = (e− 1)−2
∑∞

i=2
1
i !

(
2
i+1

)d.
The theorem is built upon a class of method called ”coverage process” (see [e.g. Hal85; Hal88]).

The core idea is to split the hypercube [0, 1]d into numerous small subcubes, and then consider
further subcubes, such that the covered area in these further subcubes are independent. Please
find the detailed proof in Section 3.4.5.

Based on Theorem 3.3 and the asymptotic variance formula (3.10), we can construct a test for

H0 : P
(X,Y ) = PX ⊗ P Y v.s. H1 : P

(X,Y ) ̸= PX ⊗ P Y , (3.12)
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as follows: We reject H0 if

n1/2 (1− e−1)κX,Y ;Rand
n

Sn
≥ zα, (3.13)

where zα is the α-uppder quantile of standard normal distribution. Since the limiting distribu-
tion is totally independent with the marginal distribution PX and P Y , test (3.13) is distribution-
free. Such desirable property is particularly preferred in the context of multiple testing, where
one would resort to some correction procedures, for instance, Bonferroni procedure and Ben-
jamini–Hochberg procedure, which requires an extremely small p-value to reject the null hy-
pothesis. Thanks to the distribution-freeness, the proposed test (3.13) can typically achieve a very
small p-value under the null hypothesis (see Section 3.3 for an empirical demonstration), while
other testing procedures like distance covariance [SRB07] and HSIC [Gre+05b] require numerous
permutation tests, which are computationally expensive.

Remark 3.2. Theorem 3.3 establishes a CLT of κX,Y ;Rand
n for all dimensions. In particular, when

dX = dY = 1, the expression of the asymptotic variance have an explicit value of (e−1)−2(−4γ0+
4Ei(1)−5) ≈ 0.091992, where γ0 is Euler’s gamma constant and Ei(1) is the exponential integral
evaluate at 1.

3.3 Simulations
In this section, we present some numerical demonstrations on the effectiveness of the coverage
correlation coefficient. We first discuss the computation complexity of our κX,Y ;⋆

n in Section 3.3.1,
and then in Section 3.3.2, we compare the power performance of correlation coefficient with some
existing methods in different settings.

3.3.1 Computation

The main challenge lies in the implementation of κX,Y ;⋆
n is the calculation of the uncovered area

V ⋆
n,γ , or equivalently, the covered area 1 − V ⋆

n,γ . When dX = dY = 1, edges of n subcubes split
the unit cube [0, 1]2 into (n + 1)2 smaller regions that we call elementary cubes (see Fig. 3.2 for
an example of n = 2). To calculate the total covered area, we simply need to sum the areas of all
elementary cubes that are covered by at least one subcube. A naive algorithm is to iterate over all
n subcubes, and for each subcube, we identify the covered elementary cubes in it. However, in the
worst case where all the subcubes stack together, such algorithm is of orderO(n2). An alternative
approach leverages the fact that, for every interval on the x-axis, the covered area within that
interval depends solely on the corresponding covered length on the y-axis. For instance, in Fig.
3.2, the covered area between (x2, x3) is (y4− y1)(x3−x2). Therefore, the problem of computing
the total covered area can be reduced into the following query:

Given an interval on x-axis, what is the corresponding covered length on the y-axis?

Since [0, 1] is divided into n+1 intervals by n points, and each query can be answered via segment
tree in O(log n) time [De 00], the entire problem can be solve in O(n log n) time. In higher
dimensional case, the time complexity of this algorithm grows polynomially with the dimension,
we suggest to use the Monte Carlo integration to obtain an approximation of the covered area.
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Figure 3.2: Two subcubes split the unit cube into 25 elementary cubes.

3.3.2 Power comparison
In the following, we carry out an empirical power analysis on the proposed independence test (3.13).
Our main finding reveals that the proposed test demonstrates performance comparable to Chat-
terjee’s correlation coefficient when signals exhibit oscillatory behavior, while achieving superior
performance under alternatives with implicit correlation through confounding variables.

We evaluate the performance of κX,Y ;Rand
n under both univariate and multivariate marginal

distributions:

(a) univariate marginal distributions: dX = dY = 1 with a fixed sample size n = 1000

(b) multivariate marginal distributions: dX = 2, dY = 1 with a fixed sample size n = 2000

We compare κX,Y ;Rand
n with the following quantities:

(I) Kernel measure of association (KMAc) [DGS20]: Let (X1, Y1), (X2, Y2)
iid∼ P (X,Y ) ∈ P(Rd).

Then generate (X ′, Y ′, Ỹ ′) as follows: draw X ′ ∼ PX , and then draw Y ′, Ỹ ′ iid∼ P Y |X=X′ .
Consider the following measure of dependency:

ηK(X, Y ) :=
E[E[K(Y ′, Ỹ ′) | X ′]]− E[K(Y1, Y2)]

E[K(Y1, Y1)]− E[K(Y1, Y2)]
,

where K : RdX × RdY → R is a symmetric, nonnegative kernel function. Although the
expression above may not seem to be intuitive as a dependency measurement between X
and Y , [DGS20] demonstrates that it is simply a rescaled maximal mean discrepancy (MMD)
between PX and the conditional distribution P Y |X . In [DGS20], the authors considered a
general graph-based estimator of ηK , which is defined as a coefficient of correlation be-
tweenX and Y . In our implementation, we construct the KMAc by using Gaussian kernel,
i.e. K(x, y) = exp(−∥x− y∥2), and k-NN with fixed k = 20.

(II) Chatterjee’s correlation coefficient [Cha21]: since Chatterjee’s coefficient is only defined
for univariate marginals, we compute its empirical powers and compare them with other
methods solely under the case where dX = dY = 1.

(III) Distance correlation [SRB07]: Given (X1, Y1), . . . , (Xn, Yn)
iid∼ P (X,Y ) ∈ P(Rd). Let aij =

∥Xi−Xj∥ and bij = ∥Yi−Yj∥. Then we center them by consideringAij = aij−ai,+−a+,j+
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a+,+ andBij = bij−bi,+−b+,j+b+,+, where ai,+ = 1
n

∑n
j=1 aij , a+,+ = 1

n2

∑n
i=1

∑n
j=1 aij ,

a+,j =
1
n

∑n
i=1 aij , and similarly for bi,+, b+,j, b+,+. The distance correlation is simply the

Pearson’s correlation between Aij and Bij’s, i.e.

dcor({(Xi, Yi)}ni=1) =
1
n2

∑n
i,j=1AijBij√

1
n2

∑n
i,j=1Aij

√
1
n2

∑n
i,j=1Bij

.

(IV) HSIC [Gre+05b; Gre+07]: Given (X1, Y1), . . . , (Xn, Yn)
iid∼ P (X,Y ) ∈ P(Rd). Consider two

kernel functions K,L : Rd → R, write kij = K(Xi, Xj) and lij = L(Yi, Yj). The HSIC test
statistic is

HSIC({(Xi, Yi)}ni=1) =
1

n2

n∑
i,j=1

kijlij +
1

n4

n∑
i,j,s,t=1

kijlst − 2
1

n3

n∑
ijs=1

kijlis.

We choose bothK and L to be be the Gaussian kernel with median heuristic as bandwidth.

For method (I), (III), (IV), we calculate their empirical powers (with 400 replications) under sev-
eral different settings under both cases (a) and (b), while for Chatterjee’s correlation coefficient
we only calculate its empirical power under case (a). Additionally, method (III) and (IV) do not
allow an distribution-free null distribution, we apply a permutation-based technique with 600
permutations to obtain the p-values.

We introduce some extra notations before stating our findings. We denote X(i), where i =
1, . . . , dX , to be the i-th coordinate of dX-dimensional random vector X , and Y (j), where j =
1, . . . , dY , be the j-th coordinate of dY -dimensional random vector Y . Without loss of gener-
ality, we assume dX ≥ dY and let d = dX + dY . Let λ to be the noise level taking values in
{0, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2}. Suppose (ε1, ε2) ∼ N (0, IdX ) ⊗ N (0, IdY ) are inde-
pendent with all the other randomness, and we denote ε(j)1 and ε(j)2 as the j-th coordinate of them.
We summarise our settings and the corresponding findings as follow.

Linear correlation. The following linear correlation model is considered (see Fig. 3.3):

Y = 0.5X1+ 7λε2, (3.14)

where 1 ∈ RdX×dY is a matrix with all entries equal to 1. Since the coverage correlation co-
efficient inherits the ”space-filling” idea from the Chatterjee’s coefficient, it is not surprising to
see that both κX,Y ;Rand

n and Chatterjee’s correlation coefficient have relatively inefficient power
performance compare to dCor and HSIC under a smooth alternative, such as linear correlation
[CB20; SDH22b; ADN21]. The power of KMAc is notably affacted by the increasing level of noise.

Archimedean spiral and Lissajous. Let U ∼ Unif([0, 1]dX ). Write U (i) be the i-th coordinate
of random vector U . We consider the following two data-generating mechanism:

(a) Archimedean spiral:

X(i) = U (i) sin
(
10πU (i)

)
+ 0.15λε

(i)
1 , i = 1, . . . , dX (3.15)

Y (j) = U (j) cos
(
10πU (j)

)
+ 0.15λε

(j)
2 , j = 1, . . . , dY . (3.16)
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Figure 3.3: Dependency measurements applied to increasing noisy dataset with linear correlation
model (3.14). The left-hand side presents a noiseless pattern of the samples with n = 2000.
The right-hand side is the power curve display the results of various methods under the case of
n = 1000, dX = dY = 1 and n = 2000, dX = 2, dY = 1.

(b) Lissajour curve:

X(i) = sin
(
3U (i) + π/2

)
+ 0.1λε

(i)
1 , i = 1, . . . , dX (3.17)

Y (j) = sin
(
4πU (j)

)
+ 0.1λε

(j)
2 , j = 1, . . . , dY . (3.18)

The correlation defined above can be viewed as spurious correlation between X and Y through
a confounder U . Fig. 3.4 implies that the coverage correlation coefficient dominates Chatterjee’s
coefficient in both cases, and for Lissajous type of correlation, our proposed coefficient signif-
icantly better than all the other competitors. This is consistent with the finding in Proposition
3.1(i).

Fractional Brownian Motion. Fractional Brownian motion (FBM) is a generalisation of the
Brownian motion with dependent increment. Sepcifically, consider a Gaussian process Bh(t) in
[0, T ] with zero expectation and covariance function

E[Bh(t)Bh(s)] =
1

2
(|t|2h + |s|2h − |t− s|2h),

where h ∈ (0, 1) is call the Hurst index (see [Nou12]). Let Bh
i (t), for i = 1, . . . , d, be d indepen-

dent FBM on [0, T ] where we fix h = 0.75 and T = n. Then we generate X and Y through:

X = (Bh
1 (t), . . . , B

h
dX
) + 0.5λε1 and Y = (Bh

dX+1(t), . . . , B
h
d ) + 0.5λε2, (3.19)

Although model (3.19) implies a stochastic correlation between X and Y , which can not be de-
scribed by a functional relationship, Fig. 3.5 implies a comparable performance between our
method and Chatterjee’s coefficient. This is mainly because the stochastic correlation can fre-
quently present a clear correlation pattern for each realisation. For instance, the example on
the right-hand side of Fig. 3.5 shows a clear correlation even the correlation itself is generated
stochastically.
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Figure 3.4: Dependency measurements applied to increasing noisy dataset with correlation based
on Archimedean spiral and Lissajous curve. The left-hand side presents a noiseless pattern of the
samples with n = 2000. The right-hand side is the power curve display the results of various
methods under the case of n = 1000, dX = dY = 1 and n = 2000, dX = 2, dY = 1.

Figure 3.5: Dependency measurements applied to increasing noisy dataset with correlation
model (3.19). The left-hand side presents a noiseless pattern of the samples with n = 2000.
The right-hand side is the power curve display the results of various methods under the case of
n = 1000, dX = dY = 1 and n = 2000, dX = 2, dY = 1.

Local dependency. Let G1 ∼ N (0, 0.25IdX ), G2 ∼ N (0, 0.25IdY ) and ε ∼ N (0, 0.0001IdY ) are
independently generated. LetG(j)

1 , G
(j)
2 , ε(j) denote the j-th coordinate ofG1, G2, ε, respectively.
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Let

I(j) =

{
G

(j)
2 , if 0 ≤ G

(j)
1 ≤ 1 and 0 ≤ G

(j)
2 ≤ 1

X(j)1+ ε(j), otherwise
, for j = 1, . . . , dY ,

where 1 ∈ RdX×dY is a matrix with all entries equal to 1.. Then we generate (X, Y ) through

X = G1 + ε1 and Y (j) = I(j) + ε
(j)
2 (3.20)

for j = 1, . . . , dY . Model (3.20) defines a local dependency (see Fig. 3.6) between X and Y .
The result in Fig. 3.6 aligns with the theoretical findings in [CB20; SDH22b], the Chatterjee’s
coefficient does not perform well under such local alternative, while the coverage correlation
coefficient performs much better. The 20-NN KMAc does not have any power in this case.

Figure 3.6: Dependency measurements applied to increasing noisy dataset with correlation
model (3.20). The left-hand side presents a noiseless pattern of the samples with n = 2000.
The right-hand side is the power curve display the results of various methods under the case of
n = 1000, dX = dY = 1 and n = 2000, dX = 2, dY = 1.

Sinusoid. Let U ∼ Unif([−1, 1]dX ) and U (i) denote the i-th coordinate of it. Then we generate
(X, Y ) by letting

X(i) = U (i), for i = 1, . . . , dX ,

Y (j) = cos
(
8πX(j)

)
+ 1.2λε

(j)
2 , for j = 1, . . . , dY .

This example is adopted from Chatterjee [Cha21] and Shi, Drton, and Han [SDH22b], demon-
strating the strong performance of Chatterjee’s correlation coefficient. Fig. 3.7 implies that the
coverage correlation coefficient show a comparable performance with Chatterjee’s coefficient,
while the dCor and HSIC have less power. The 20-NN based KMAc shows no statistical power in
this context.

3.4 Proofs
In this section, we present the proofs for all the theoretical results in Section 3.2.
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Figure 3.7: Dependency measurements applied to increasing noisy dataset with correlation
model (3.15) and (3.16). The left-hand side presents a noiseless pattern of the samples with
n = 2000. The right-hand side is the power curve display the results of various methods un-
der the case of n = 1000, dX = dY = 1 and n = 2000, dX = 2, dY = 1.

3.4.1 Proof of Theorem 3.1
To establish the population limit of the empirical coverage correlation coefficient, we will first
prove that the desired result holds true when the joint distribution P (X,Y ) has a blockwise con-
stant density (as defined in Proposition 3.3) and then use an approximation argument to extend
the result to arbitrary continuous distributions.

Proposition 3.3. For K,L ∈ N, fix 0 < a1 < · · · < aK−1 < 1 and 0 < b1 < · · · <
bL−1 < 1. Write a0 = b0 = 0 and aK = bL = 1. Define a distribution on [0, 1]2 as P (X,Y ) :=∑K

k=1

∑L
ℓ=1 pk,ℓUnif

(
(ak−1, ak] × (bℓ−1, bℓ]

)
, where 0 < pk,ℓ < 1 satisfies

∑
k∈[K],ℓ∈[L] pk,ℓ = 1.

Then for δ > 0 and V ⋆
n,δ defined as (3.6), given (X1, Y1), . . . , (Xn, Yn)

iid∼ P (X,Y ), if n(2δ)2 → ω ∈
(0,∞), we have

V ⋆
n,δ

p−→ Dg(P
(X,Y ) ∥PX ⊗ P Y ), as n→ ∞, (3.21)

where g(x) = e−ωx and ⋆ ∈ {Rand,Reg}.

Proof. For each k ∈ [K] and ℓ ∈ [L], define Ik = {i ∈ [n] : ak−1 < Xi ≤ ak} and Jℓ = {j ∈
[n] : bℓ−1 < Yj ≤ bℓ}. Let Nk,+ := |Ik|, N+,ℓ := |Jℓ| and Nk,ℓ := |Ik ∩ Jℓ|. We also denote
Sk :=

∑k
t=0Nt,+, Tℓ :=

∑ℓ
t=0N+,t for k ∈ [K] and ℓ ∈ [L]. By the strong law of large number,

let Ω1 be the almost sure event that Nk,ℓ → npk,ℓ for all k ∈ [K] and ℓ ∈ [L]. Now we prove the
proposition under the cases of regular grid and random uniform samples separately.

(I) When ⋆ = Rand. Given (U1, V1), . . . , (Un, Vn)
iid∼ Unif([0, 1]2), R̂X,Rand and R̂Y,Rand are

the empirical rank maps constructed as in (3.3). We first fix k ∈ [K] and ℓ ∈ [L]. Observe that

{R̂X,Rand(Xi) : i ∈ Ik} = {U(Sk−1+1), . . . , U(Sk)}
{R̂Y,Rand(Yi) : i ∈ Jℓ} = {V(Tℓ−1+1), . . . , V(Tℓ)}.

Then let Fk,ℓ be the σ-algebra generated by U(Sk−1), U(Sk+1), and V(Tℓ−1), V(Tℓ+1) and (Nk,ℓ : k ∈
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[K], ℓ ∈ [L]). By David and Nagaraja [DN04, Theorem 2.5], we have

(R̂X,Rand(Xi) : i ∈ Ik)
∣∣ Fk,ℓ

iid∼ Unif[U(Sk−1), U(Sk+1)],

(R̂Y,Rand(Yj) : j ∈ Jℓ)
∣∣ Fk,ℓ

iid∼ Unif[V(Tℓ−1), V(Tℓ+1)],

where we adopt the convention that U(0) = U(S0) = 0, U(n+1) = U(SK+1) = 1, V(0) = V(T0) = 0
and V(n+1) = V(TL+1) = 1. Furthermore, since(

(Xi, Yi) : i ∈ Ik ∩ Jℓ
) ∣∣ Nk,ℓ

iid∼ Unif(ak−1, ak]⊗ Unif(bℓ−1, bℓ], (3.22)

we have(
(R̂X,Rand(Xi), R̂

Y,Rand(Yi)) : i ∈ Ik∩Jℓ
) ∣∣ Fk,ℓ

iid∼ Unif[U(Sk−1), U(Sk+1)]⊗Unif[V(Tℓ−1), V(Tℓ+1)].

Write Wk,ℓ := vol
(
[U(Sk−1), U(Sk+1)] × [V(Tℓ−1), V(Tℓ+1)] \ ∪i∈[n]B2

∞(R̂Rand
i , δ)

)
and W̄k,ℓ :=

vol
(
[U(Sk−1), U(Sk+1)] × [V(Tℓ−1), V(Tℓ+1)]

)
. As n → ∞, the contribution of the covered area by

points near the boundary of any square is negligible, hence by n(2δ)d → ω and Lemma 3.4,
conditional on Fk,ℓ, and Ω1, we have

Wk,ℓ = (1 + op(1))e
−ωpk,ℓ/W̄k,ℓW̄k,ℓ.

Let Ω2 be the event that U(Sk) →
∑

t∈[k]
∑

ℓ∈[L] pt,ℓ, U(Sk+1) →
∑

t∈[k]
∑

ℓ∈[L] pt,ℓ, V(Tℓ) →∑
t∈[ℓ]

∑
k∈[K] pk,t and V(Tℓ+1) →

∑
t∈[ℓ]

∑
k∈[K] pk,t as n→ ∞. By the law of large numbers and

the limiting behaviour of uniform order statistics, we have P(Ω2) = 1. On Ω1 ∩ Ω2, we have
W̄k,ℓ → pk,+p+,ℓ, where pk,+ :=

∑
t∈[L] pk,t and p+,ℓ :=

∑
r∈[K] pr,ℓ. Hence,

Wk,ℓ = (1 + op(1))e
−ωpk,ℓ/(pk,+p+,ℓ)pk,+p+,ℓ.

The marginal distributions of Xi and Yi are PX =
∑K

k=1 pk,+Unif(ak−1, ak] and P Y =∑L
ℓ=1 p+,ℓUnif(bℓ−1, bℓ], so for g(x) = e−ωx, we have

Dg(P
(X,Y ) ∥PX ⊗ P Y ) =

∑
k∈[K]

∑
ℓ∈[L]

(ak − ak−1)(bk − bk−1)e
−ωpk,ℓ/(pk,+p+,ℓ)

pk,+p+,ℓ
(ak − ak−1)(bk − bk−1)

=
∑
k∈[K]

∑
ℓ∈[L]

e−ωpk,ℓ/(pk,+p+,ℓ)pk,+p+,ℓ. (3.23)

Hence,

Vn,δ ≤
∑

k∈[K],ℓ∈[L]

Wk,ℓ = (1 + op(1))Dg(P
(X,Y ) ∥PX ⊗ P Y ). (3.24)

On the other hand, since
∑

k∈[K],ℓ∈[L] W̄k,ℓ = 1 + op(1), we have

Vn,δ ≥ 1−
∑

k∈[K],ℓ∈[L]

(W̄k,ℓ −Wk,ℓ) = (1 + op(1))Dg(P
(X,Y ) ∥PX ⊗ P Y ). (3.25)

The desired result follows by combining the above two inequalities.
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(II) When ⋆ = Reg. Given U = V = {i/(n + 1) : i ∈ [n]}, and R̂X,Reg and R̂Y,Reg are
the empirical rank maps constructed as in (3.3). For each fixed k ∈ [K] and ℓ ∈ [L], we write
RX
k = {R̂X,Reg(Xi) : i ∈ Ik} and RY

ℓ = {R̂Y,Reg(Yj) : j ∈ Jℓ}. Then we have

RX
k = {(Sk−1 + 1)/n, . . . , Sk/n} and RY

ℓ = {(Tℓ−1 + 1)/n, . . . , Tℓ/n}.

Therefore, let Gk,ℓ be the σ-algebra generated by Sk−1, Sk, Tℓ−1, Tℓ and (Nk,ℓ)k∈[K],ℓ∈[L], by (3.22),
we have

{R̂X,Reg(Xi) : i ∈ Ik ∩ Jℓ}|Gk,ℓ ∼ Unif

((
RX
k

Nk,ℓ

))
,

{R̂Y,Reg(Yj) : j ∈ Ik ∩ Jℓ}|Gk,ℓ ∼ Unif

((
RY
ℓ

Nk,ℓ

))
.

Let Ω3 be the almost sure event such that Nk,+/n → pk,+ and N+,ℓ/n → p+,ℓ for all k ∈ [K]

and ℓ ∈ [L]. Define Qk,ℓ := vol
(
[Sk−1/n, (Sk+1)/n]× [Tℓ−1/n, (Tℓ+1)/n] \∪ni=1B

2
∞
(
R̂Reg
i , δ

))
and Q̄k,ℓ := vol([Sk−1/n, (Sk + 1)/n] × [Tℓ−1/n, (Tℓ + 1)/n]). Then on the event Ω1 ∩ Ω3, we
have Nk,ℓ/Nk,+ → pk,ℓ/pk,+ and Nk,ℓ/Nk,+ → pk,ℓ/p+,ℓ, thus by n(2δ)2 → ω, Lemma 3.5 implies
that

E(Qk,ℓ|Gk,ℓ) → e−ωpk,ℓ/Q̄k,ℓQ̄k,ℓ, as n→ ∞. (3.26)

Then on the event Ω1 ∩ Ω3, by the concentration inequality given in Proposition 3.4, we obtain
that

E
((
Qk,ℓ − E(Qk,ℓ|Gk,ℓ)

)2 ∣∣ Gk,ℓ) =

∫ +∞

0

P
(∣∣Qk,ℓ − E(Qk,ℓ|Gk,ℓ)

∣∣ ≥ √
t
∣∣ Gk,ℓ) dt

≤ C
n

(Nk,+ + 1)2(N+,ℓ + 1)2
→ 0, as n→ ∞. (3.27)

Combining (3.26) with (3.27), we have on the event Ω1 ∩ Ω3, and conditional on Gk,ℓ

Qk,ℓ = (1 + op(1))e
−ωpk,ℓ/(pk,+p+,ℓ)pk,+p+,ℓ, as n→ ∞.

Finally, by notice that 1 −
∑

k∈[K],ℓ∈[L](Qk,ℓ − Q̄k,ℓ) ≤ Vn,δ ≤
∑

k∈[K],ℓ∈[L]Qk,ℓ, the result
follows by the same sandwich argument from (3.23)-(3.25).

We also need the following the following lemma (see Section 3.6.1 for a proof) to construct
an approximation argument.

Lemma 3.1. Let f be a Lebesgue density on Rd. Suppose f+ ≥ f on Rd such that
∫
f+ = α > 1.

For any λ > 0, let N ∼ Poi(λα) and let M | N ∼ Bin(N, 1/α). Draw independent samples
X1, . . . , XM | M iid∼ f and XM+1, . . . , XN | N −M

iid∼ (f+ − f)/(α − 1). Let σ be a uniform
random permutation of {1, . . . , N} conditional on N . Then

Xσ(1), . . . , Xσ(N) | N
iid∼ f+/α.

89



Chapter 3 Coverage Correlation Coefficient: Beyond Functional Correlation 3.4 Proofs

Now, we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let (X, Y ) ∼ P (X,Y ) and fX,Y be the density of P (X,Y ) with respect to
the Lebesgue measure. By replacing (Xi, Yi) with (FX(Xi), FY (Yi)), where FX and FY are the
marginal cumulative distribution functions of (Xi, Yi), we may assume without loss of generality
that fX,Y is supported on [0, 1]2 with marginal distributions fX and fY uniform on [0, 1].

For any K,L ∈ N, we define ak = k/K for k ∈ {0, . . . , K} and bℓ = ℓ/L for ℓ ∈ {0, . . . , L}.
For any given ϵ ∈ (0, 0.1), since fX,Y is continuous, we choose K,L sufficiently large such that

max
k∈[K],ℓ∈[L]

{
sup

x∈(ak−1,ak],y∈(bℓ−1,bℓ]

fX,Y (x, y)− inf
x∈(ak−1,ak],y∈(bℓ−1,bℓ]

fX,Y (x, y)

}
≤ ϵ. (3.28)

For each k ∈ [K] and ℓ ∈ [L], let f−
k,ℓ := infx∈(ak−1,ak],y∈(bℓ−1,bℓ] fX,Y (x, y) and set f−

X,Y (x, y) =

f−
k,ℓ if x ∈ (ak−1, ak] and y ∈ (bℓ−1, bℓ]. We also define

p−k,ℓ :=

∫
x∈(ak−1,ak],y∈(bℓ−1,bℓ]

f−
X,Y (x, y) d(x, y)∫

(x,y)∈[0,1]2 f
−
X,Y (x, y) d(x, y)

=
f−
k,ℓ∑

r∈[K]

∑
s∈[L] f

−
r,s

.

By (3.28), β :=
∫
(x,y)∈[0,1]2 f

−
X,Y (x, y) d(x, y) ≥ 1 − ϵ. Let H1, . . . , Hn

iid∼ Unif[0, 1] indepen-
dent of all other randomness in the problem. Then the rejection sample {(Xi, Yi) : Hi ≤
f−(Xi, Yi)/fX,Y (Xi, Yi)} has cardinalityN− ∼ Bin(n, β) and conditionally onN−, the rejection
sample are independent and identically distributed from a joint distribution of the form

P (X,Y ),− :=
∑
k∈[K]

∑
ℓ∈[L]

p−k,ℓUnif
(
(ak−1, ak]× (bℓ−1, bℓ]

)
.

Let PX,− and P Y,− be the corresponding marginals of P (X,Y ),−. Applying Proposition 3.3 con-
ditionally on N−, and using the fact that N−/n

p−→ β, we have the following holds for ⋆ ∈
{Reg,Rand} with g−(x) = e−βx:

V ⋆
n = V ⋆

n,1/(2
√
n) ≤ V ⋆

N−,1/(2
√
n)

p−→ Dg−(P
(X,Y ),− ∥PX,− ⊗ P Y,−)

=
K∑
k=1

L∑
ℓ=1

e−βp
−
k,ℓ/(p

−
k,+p

−
+,ℓ)p−k,+p

−
+,ℓ, (3.29)

where the final equality follows from a similar calculation as in (3.23) with p−k,+ :=
∑

ℓ∈[L] p
−
k,ℓ and

p−+,ℓ :=
∑

k∈[K] p
−
k,ℓ. Defining f−

X (x) :=
∫
y∈[0,1] f

−
X,Y (x, y) dy and f−

Y (y) :=
∫
x∈[0,1] f

−
X,Y (x, y) dx,

then for any (x, y) ∈ (ak−1, ak]× (bℓ−1, bℓ], we have by (3.28) that

KLp−k,ℓ =
f−
X,Y (x, y)∫

(s,t)∈[0,1]2f−X,Y (s,t) d(s,t)

≥ fX,Y (x, y)− ϵ,

Kp−k,+ =
f−
X (x)∫

(s,t)∈[0,1]2f−X,Y (s,t) d(s,t)

≤ 1

1− ϵ
,

Lp−+,ℓ =
f−
Y (y)∫

(s,t)∈[0,1]2f−X,Y (s,t) d(s,t)

≤ 1

1− ϵ
,
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where we used the fact that the marginal densities fX(x) = fY (y) = 1. Thus, we have

K∑
k=1

L∑
ℓ=1

e−βp
−
k,ℓ/(p

−
k,+p

−
+,ℓ)p−k,+p

−
+,ℓ ≤

1

(1− ϵ)2

∫
(x,y)∈[0,1]2

e−(fX,Y (x,y)−ϵ)(1−ϵ)3 d(x, y)

≤ eϵ(1+3∥f∥∞)

(1− ϵ)2

∫
(x,y)∈[0,1]2

e−fX,Y (x,y) d(x, y)

=
eϵ(1+3∥f∥∞)

(1− ϵ)2
Dg(P

(X,Y ) ∥PX ⊗ P Y ). (3.30)

Now, we turn to an asymptotic stochastic lower bound of V ⋆
n . To this end, we define f+

k,ℓ :=

supx∈(ak−1,ak],y∈(bℓ−1,bℓ]
fX,Y (x, y) and set f+

X,Y (x, y) = f+
k,ℓ if x ∈ (ak−1, ak] and y ∈ (bℓ−1, bℓ].

We also define

p+k,ℓ :=

∫
x∈(ak−1,ak],y∈(bℓ−1,bℓ]

f+
X,Y (x, y) d(x, y)∫

(x,y)∈[0,1]2 f
+
X,Y (x, y) d(x, y)

=
f+
k,ℓ∑

r∈[K]

∑
s∈[L] f

+
r,s

.

Again by (3.28), α :=
∫
(x,y)∈[0,1]2 f

+
X,Y (x, y) d(x, y) ≤ 1 + ϵ. We may assume that α > 1, since

otherwise fX,Y itself has a blockwise constant structure and the desired result follows directly
from Proposition 3.3. Let N+ ∼ Poi(α2n) be independent of other randomness in this prob-
lem and set M | N+ ∼ Bin(N+, 1/α), then M ∼ Poi(αn). We will henceforth work on
the asymptotically almost sure event that M ≥ n. Now draw additional independent samples
Xn+1, . . . , XM | M iid∼ fX,Y and XM+1, . . . , XN+ | N+ − M

iid∼ (f+
X,Y − fX,Y )/(α − 1). We

have by Lemma 3.1 that X1, . . . , XN+ , conditional on N+ and after random permutation, is an
i.i.d. sample from P (X,Y ),+ :=

∑
k∈[K],ℓ∈[L] p

+
k,ℓUnif

(
(ak−1, ak]× (bℓ−1, bℓ]

)
with density f+

X,Y /α.
Again, applying Proposition 3.3 conditionally onN+ and using the fact thatN+/n

p−→ α, we have
the following holds for ⋆ ∈ {Reg,Rand} with g+(x) = e−αx that

V ⋆
n = V ⋆

n,1/(2
√
n) ≥ V ⋆

N+,1/(2
√
n)

p−→ Dg+(P
(X,Y ),+ ∥PX,+ ⊗ P Y,+)

=
K∑
k=1

L∑
ℓ=1

e−αp
+
k,ℓ/(p

+
k,+p

+
+,ℓ)p+k,+p

+
+,ℓ, (3.31)

where p+k,+ :=
∑

ℓ∈[L] p
+
k,ℓ and p++,ℓ :=

∑
k∈[K] p

+
k,ℓ. Defining f+

X (x) :=
∫
y∈[0,1] f

+
X,Y (x, y) and

f+
Y (y) :=

∫
x∈[0,1] f

+
X,Y (x, y), then for any (x, y) ∈ (ak−1, ak]× (bℓ−1, bℓ], we have by (3.28) that

KLp+k,ℓ =
f+
X,Y (x, y)∫

(s,t)∈[0,1]2f+X,Y (s,t) d(s,t)

≤ fX,Y (x, y) + ϵ,

Kp+k,+ =
f+
X (x)∫

(s,t)∈[0,1]2f+X,Y (s,t) d(s,t)

≥ 1

1 + ϵ
,

Lp++,ℓ =
f+
Y (y)∫

(s,t)∈[0,1]2f+X,Y (s,t) d(s,t)

≤ 1

1 + ϵ
.
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Thus, we have

K∑
k=1

L∑
ℓ=1

e−αp
+
k,ℓ/(p

+
k,+p

+
+,ℓ)p+k,+p

+
+,ℓ ≥

1

(1 + ϵ)2

∫
(x,y)∈[0,1]2

e−(fX,Y (x,y)+ϵ)(1+ϵ)3 d(x, y)

≥ e−ϵ(2+4∥f∥∞)

(1 + ϵ)2

∫
(x,y)∈[0,1]2

e−fX,Y (x,y) d(x, y)

=
e−ϵ(2+4∥f∥∞)

(1 + ϵ)2
Dg(P

(X,Y ) ∥PX ⊗ P Y ), (3.32)

where we used the fact that (fX,Y (x, y) + ϵ)(1 + ϵ)3 ≤ (fX,Y (x, y) + ϵ)(1 + 4ϵ) ≤ fX,Y (x, y) +
2ϵ + 4ϵ∥fX,Y ∥∞ for ϵ < 0.1. Combining (3.29), (3.30), (3.31) and (3.32), and using the fact that ϵ
can be chosen arbitrarily close to 0, we have for ⋆ ∈ {Reg,Rand}

V ⋆
n

p−→ Dg(P
(X,Y ) ∥PX ⊗ P Y ).

The desired result then follows immediatley from the definition of κX,Y ;⋆
n in (3.7) and the fact that

f = (g − e−1)/(1− e−1).

3.4.2 Proof of Proposition 3.1

Proof. The first part of property (i) can be immediately obtained by the expression of κX,Y and
the definition of f -divergence. The second part of (i) follows from Lemma 3.3(i), given the fact
that f(x) = (e−x−e−1)/(1−e−1) is strictly convex at 1. Property (ii) is a direct application of the
data processing inequality of f -divergence (see Lemma 3.3(ii)). Property (iii) follows by Lemma
3.3(iii). Finally, the symmetric property can be seen by the definition of f -divergence.

3.4.3 Proof of Proposition 3.2
To prove Proposition 3.2, we first prove a bounded difference property of the covered area (Lemma
3.2), then the proposition can be obtained by applying the McDiarmid’s inequality.

Lemma 3.2. Let (x1, y1), . . . , (xn, yn) be n points in R2 and we write zi = (xi, yi) for i = 1, . . . , n
and z = (z1, . . . , zn), x = (x1, . . . , xn), y = (y1, . . . , yn). Assume that xi ̸= xj and yi ̸= yj for
all i ̸= j. Let rxi = n−1

∑n
j=1 1{xj ≤ xi}, ryi = n−1

∑n
j=1 1{yj ≤ yi}, and ri = (rxi , r

y
i ) for

i = 1, . . . , n. Let IQ = {i ∈ [n] : ri ∈ Q} for any fixed subset Q ⊆ [0, 1]2. We define a function

f(z) :=

vol

(⋃
i∈IQ B

2
∞

(
ri,

1
2
√
n

)
∩Q

)
vol(Q)

.

Let (x′1, y
′
1), . . . , (x

′
n, y

′
n) be another n points in R2, let z′i = (x′i, y

′
i) for i = 1, . . . , n and z′ =

(z′1, . . . , z
′
n). For any k ∈ [n], let zk ∈ R2n be the vector obtained by replacing zk with z′k in the

vector z. Then we have

|f(z)− f(zk)| ≤ 5

nvol(Q)
.
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Proof. Note |f(z) − f(zk)| = 0 if zk = z′k, thus the result holds automatically. Assume that
zk ̸= z′k. Define

I0 := {i ∈ [n] : (xi − xk)(xi − x′k) ≥ 0 and (yi − yk)(yi − y′k) ≥ 0} ∩ IQ,
I1 := {i ∈ [n] : (xi − xk)(xi − x′k) < 0 and (yi − yk)(yi − y′k) < 0} ∩ IQ,
I2 := {i ∈ [n] : (xi − xk)(xi − x′k) < 0 and (yi − yk)(yi − y′k) ≥ 0} ∩ IQ,
I3 := {i ∈ [n] : (xi − xk)(xi − x′k) ≥ 0 and (yi − yk)(yi − y′k) < 0} ∩ IQ.

Note that when replacing zk by z′k in z, both {xi : i ∈ I0} and {yi : i ∈ I0} maintain their
original ranks, and both {xi : i ∈ I1} and {yi : i ∈ I1} have a shift of 1/n in either direction.
The ranks of {xi : i ∈ I2} have a similar shift of 1/n while the ranks of {yi : i ∈ I2} remain the
same. Conversely, the ranks of {xi : i ∈ I3} remains the same while ranks of {yi : i ∈ I3} have
a shift of 1/n in either direction. Specifically, we write rki = (rx

k

i , r
yk

i ) for i = 1, . . . , n, where xk
is the vector obtained by replacing xk with x′k in vector x and yk is obtained by replacing yk with
y′k in vector y, then we have

rki =


ri, if i ∈ I0

ri + (± 1
n
,± 1

n
), if i ∈ I1

ri + (± 1
n
, 0), if i ∈ I2

ri + (0,± 1
n
), if i ∈ I3.

(3.33)

Let Uj =
⋃
i∈Ij B

2
∞(ri, 1/(2n

−1/2)) and Uk
j =

⋃
i∈Ij B

2
∞(rki , 1/(2n

−1/2)) for j = 0, 1, 2, 3, we
have the following decompositions

C :=
⋃
i∈IQ

B2
∞

(
ri,

1

2
√
n

)
=

( 3⋃
j=0

Uj
)
∪B2

∞

(
rk,

1

2
√
n

)
,

Ck :=
⋃
i∈IQ

B2
∞

(
rki ,

1

2
√
n

)
=

( 3⋃
j=0

Uk
j

)
∪B2

∞

(
rkk ,

1

2
√
n

)
.

Note by (3.33), we have vol
(
U0∆Uk

0

)
= 0, vol

(
U1∆Uk

1

)
≤ 2/n and vol

(
Uj∆Uk

j

)
≤ 1/n for

j = 2, 3. Therefore, we have

|f(z)− f(z′)| ≤
vol

(
(C∆Ck) ∩Q

)
vol(Q)

≤
3∑
j=0

vol
(
Uj∆Uk

j

)
vol(Q)

+

vol

(
B2

∞

(
rk,

1
2
√
n

)
∆B2

∞

(
rkk ,

1
2
√
n

))
vol(Q)

≤ 5

nvol(Q)
,

as desired.

Based on Lemma 3.2, we have the following concentration inequality, which is a stronger
version of Proposition 3.2.
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Proposition 3.4. Let (X1, Y1), . . . , (Xn, Yn)
iid∼ P (X,Y ) ∈ P(R2) and we write Zi = (Xi, Yi) for

i = 1, . . . , n. Let R̂Reg
i = (R̂X,Reg(Xi), R̂

Y,Reg(Yi)) be the corresponding rank transformations
under the regular grid reference distribution (see (3.4)). Let Q ⊆ [0, 1]2, and write IQ = {i ∈ [n] :

R̂Reg
i ∈ Q} and N = |IQ|. We define

V := V (Z1, . . . , Zn) =
vol

(
Q \ ∪i∈IQB2

∞(R̂Reg
i , 1

2
√
n
)
)

vol(Q)
.

Then we have for any t ≥ 0 and v ∈ [n],

P
(∣∣V − E(V |N = v)

∣∣ ≥ t
∣∣ N = v

)
≤ 2e−2nt2vol2(Q)/25.

Proof. GivenN = v, Lemma 3.2 implies that V is a function satisfies the bounded difference prop-
erty with parameters

(
5/(nvol(Q)), . . . , 5/(nvol(Q))

)
. Thus by the McDiarmid inequality [see,

e.g. Wai19, Corollary 2.21], we have

P
(∣∣V − E(V |N = v)

∣∣ ≥ t
∣∣ N = v

)
≤ 2e−2nt2vol2(Q)/25, for all t ≥ 0,

as desired.

3.4.4 Proof of Theorem 3.2

Proof. Theorem 3.2 is a direct corollary of Lemma 3.6 by letting P = Q = [0, 1]d and δ =
1/2n−1/d.

3.4.5 Proof of Theorem 3.3
We first present the following important Lemma follows by the Slutsky’s Theorem (see Section
3.6.2 for the proof).

Lemma 3.3. Let (Mn)n and (L)n be sequences of random variables such thatMn
d−→ N(µ, α2) and

Ln
p−→ β2. Let Fn be the sigma-algebra generated by (Mi)i≤n and (Li)i≤n. If (Xn)n is a sequence

of random variables such that

E sup
−∞<x<∞

∣∣∣∣P(Xn −Mn√
Ln

≤ x

∣∣∣∣ Fn

)
− Φ(x)

∣∣∣∣ → 0, n→ +∞. (3.34)

Then we have Xn
d−→ N(µ, α2 + β2).

We now proceed to present the proof of Theorem 3.3, which heavily depends on a set of
techniques from the theory of coverage process. We guide the readers to [Hal85] for further
details.

Proof. By the definition of κX,Y ;Rand
n in (3.7) and the fact that E(V Rand

n ) = (1− 1/n)n → e−1 (see
Lemma 3.6), it suffices to prove that

n1/2(V Rand
n − EV Rand

n )
d−→ N

(
0, e−2

∞∑
i=2

1

i!

(
2

i+ 1

)d)
.
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For any n ∈ N, let γ := 1
2n1/d . Then for any λ ∈ Q>0, there exists a sufficient large n such that

L = {(λ + 2)γ}−d is an integer. We can then partition [0, 1]d =
⋃L
ℓ=1 Pℓ into L d-dimensional

small cubes where each small cube Pℓ has edge length (λ+2)γ, volume p := (λ/2+ 1)dn−1 and
that Pℓ ∩ Pk has Lebesgue measure 0 for all k ̸= ℓ. Inside each Pℓ, we construct a concentric
subcube Qℓ of edge length λγ. For any ℓ ∈ [L], define Iℓ := {i ∈ [n] : R̂Rand

i ∈ Pℓ} and letNℓ :=

|Iℓ|. We write V Rand
n,ℓ := vol

(
Qℓ \

⋃
i∈Iℓ B

d
∞(R̂Rand

i , γ)
)
= vol

(
Qℓ \

⋃
i∈Iℓ B∞(R̂Rand

i , γ;Pℓ)
)
,

where the second equality holds since each point in Qℓ is at least γ away from the boundary
of Pℓ. We will first establish the limiting distribution of

∑L
ℓ=1 V

Rand
n,ℓ and then control V Rand

n −∑L
ℓ=1 V

Rand
n,ℓ .

Recall the definition of πX,Rand and πY,Rand in (3.2). Under H0, πX,Rand and πY,Rand are in-
dependent, which implies that R̂Rand

i
iid∼ Unif([0, 1]d) for i = 1, . . . , n. Then the conditional

distribution of R̂Rand
i | i ∈ Iℓ, denoted as PR

ℓ , is uniform in Pℓ. For any x1, x2 ∈ Q1, define
C(x1, x2) := B∞(x1, γ;P1) ∩B∞(x2, γ;P1) and

v(x1) := 1− PR
1

(
B∞(x1, γ;P1)

)
= 1− 1

np
,

u(x1, x2) := 1− PR
1

(
B∞(x1, γ;P1)

)
− PR

1

(
B∞(x2, γ;P1)

)
+ PR

1

(
C(x1, x2)

)
= 1− 2

np
+

vol(C(x1, x2))

p
.

We first fix an ℓ ∈ [L]. By Lemma 3.6 we have for X1,ℓ, X2,ℓ
iid∼ Unif(Qℓ) that

E
[
Var

(
V Rand
n,ℓ | Nℓ

)]
= E

[(
E
(
(V Rand

n,ℓ )2 | Nℓ

)
−
{
E
(
V Rand
n,ℓ | Nℓ

)}2
)]

= vol2(Q1)E
[
E
({
u(X1,ℓ, X2,ℓ)

}Nℓ

∣∣∣ Nℓ

)
− E

({
v(X1,ℓ)v(X2,ℓ)

}Nℓ

∣∣∣ Nℓ

)]
=

∫
Q2

1

[{
p
(
u(x1, x2)− 1

)
+ 1

}n
−
{
p
(
v(x1)v(x2)− 1

)
+ 1

}n]
dx1dx2

=

∫
Q2

1

(
1 + o(1)

){
enp(u(x1,x2)−1) − enp(v(x1)v(x2)−1)

}
dx1dx2

=

∫
Q2

1

(1 + o(1))
{
e−2+nvol(C(x1,x2)) − e−2+(np)−1}

dx1dx2

= (1 + o(1))(λγ)2d
∫
[0,1]2d

{
e−2+(λ/2)dvol(C̃(y1,y2)) − e−2+(np)−1}

dy1dy2

(3.35)

where we used the fact that E aNℓ =
(
1 + p(a− 1)

)n for Nℓ ∼ Bin(n, p) and a > 0 in the third
equality, Lemma 3.9 in the fourth step and we defined C̃(y1, y2) :=

⋂2
i=1B∞(yi, 1/λ; (−1/λ, 1+

1/λ)d) for (y1, y2) ∈ (0, 1)2d in the final step. Observe that the integral in the final expression
of (3.35) is a constant depending only on λ and d (and does not depend on n). Hence, sum-
ming (3.35) over ℓ ∈ [L], we have

E
[ L∑
ℓ=1

Var
(
V Rand
n,ℓ | Nℓ

)]
= β2n−1 + o(n−1), (3.36)
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where

β2 := 2−dλ2d(λ+ 2)−d
∫
[0,1]2d

{
e−2+(λ/2)dvol(C̃(y1,y2)) − e−2+(λ/2+1)−d

}
dy1dy2. (3.37)

Now we turn to bound

Var

( L∑
ℓ=1

Var
(
V Rand
n,ℓ | Nℓ

))
=

∑
ℓ,k∈[L]

Cov
(
Var(V Rand

n,ℓ | Nℓ),Var(V
Rand
n,k | Nk)

)
.

Fix ℓ, k ∈ [L] for now.
Using Lemma 3.6 and by a similar argument as in the second step of (3.35), we have for

independent X1,ℓ, X2,ℓ
iid∼ Unif(Qℓ) and X1,k, X2,k

iid∼ Unif(Qk) that

Var(V Rand
n,ℓ | Nℓ) = vol2(Q1)E

(
u(X1,ℓ, X2,ℓ)

Nℓ −
(
v(X1,ℓ)v(X2,ℓ)

)Nℓ

∣∣∣ Nℓ

)
Var(V Rand

n,k | Nk) = vol2(Q1)E
(
u(X1,k, X2,k)

Nk −
(
v(X1,k)v(X2,k)

)Nk

∣∣∣ Nk

)
.

Consequently, using Fubini’s theorem, we have

Cov
(
Var(V Rand

n,ℓ | Nℓ),Var(V
Rand
n,k | Nk)

)
=

∫
Q2

1×Q2
1

{
Cov(u(x1, x2)

Nℓ , u(x3, x4)
Nk)− 2Cov(v(x1)

Nℓv(x2)
Nℓ , u(x3, x4)

Nk)

+ Cov(v(x1)
Nℓv(x2)

Nℓ , v(x3)
Nkv(x4)

Nk

}
d(x1, x2, x3, x4)

= vol4(Q1)O(n
−2) = O(n−6),

where in the penultimate step, we have used both Lemma 3.8 and the fact that max{p(u(x1, x2)−
1), p(u(x3, x4)− 1), p(v(x1)v(x2)− 1), p(v(x3, x4)− 1)} = O(1/n). As a result, we have

Var

( L∑
ℓ=1

Var
(
V Rand
n,ℓ | Nℓ

))
= O(n−4). (3.38)

Combining (3.36) and (3.38), Markov’s inequality implies that

n
L∑
ℓ=1

Var
(
V Rand
n,ℓ | Nℓ

) p−→ β2. (3.39)

Let Fn be the sigma-algebra generated by (Nℓ)
L
ℓ=1. Since V Rand

n,1 , . . . , V Rand
n,L are independent

and identically distributed conditional on Fn, we may apply the Berry–Esseen theorem [Ber41;
Ess42] to obtain

sup
x∈R

∣∣∣∣P(n1/2

L∑
ℓ=1

V Rand
n,l ≤ n1/2

L∑
ℓ=1

E(V Rand
n,l | Nℓ) + x

(
n

L∑
ℓ=1

Var(V Rand
n,l | Nℓ)

)1/2
∣∣∣∣ Fn

)
− Φ(x)

∣∣∣∣ ≤ CRn,

(3.40)

96



Chapter 3 Coverage Correlation Coefficient: Beyond Functional Correlation 3.4 Proofs

where C > 0 is a universal constant and

Rn :=

∑L
ℓ=1 E

{
|V Rand
n,ℓ − E(V Rand

n,ℓ | Nℓ)|3
∣∣ Nℓ

}{∑L
i=1Var(V

Rand
n,ℓ | Nℓ)

}3/2
.

Moreover, by (3.39) and the fact that V Rand
n,ℓ ≤ vol(Pℓ) = (λ/2 + 1)dn−1 for all ℓ ∈ [L], we have

Rn ≤ (λ/2 + 1)3dn−2

{ L∑
ℓ=1

Var(V Rand
n,l |Nℓ)

}−3/2

= Op(n
−1/2). (3.41)

If we can further show that for a fixed λ ∈ Q, there exists constants α, depending only on λ and
d, such that

n1/2

L∑
ℓ=1

{
E(V Rand

n,ℓ | Nℓ)− E(V Rand
n,ℓ )

} d→ N (0, α2), (3.42)

then combining (3.40), (3.41), (3.42) with Lemma 3.3, we would have

n1/2

L∑
ℓ=1

{V Rand
n,l − EV Rand

n,l } d→ N (0, α2 + β2). (3.43)

To prove (3.42), we use the asymptotic normality of the sum of multinomial random variables
established in Holst [Hol72, Theorem 1]. Write f(w) := E(V Rand

n,1 | N1 = w) for w ∈ {0, . . . , n}
and let W ∼ Poi(np). Define

τ 2 := LVar
(
f(W )

)
− L2

n
Cov2

(
W, f(W )

)
.

Then Holst [Hol72, Theorem 1] implies that

1

τ

L∑
ℓ=1

{
E(V Rand

n,ℓ | Nℓ)− E(V Rand
n,ℓ )

} d−→ N (0, 1), n→ ∞. (3.44)

Hence, to prove (3.42), it suffices to investigate the behavior of nτ 2. Firstly, by Lemma 3.6, we
have for X1,1 ∼ Unif(Q1),

nLVar
(
f(W )

)
=nLvol2(Q1)Var

(
E
(
{v(X1,1)}W | W

))
=

λ2d

(2λ+ 4)d
Var

({
1− (λ/2 + 1)−d

}W)
=

λ2d

(2λ+ 4)d
e−2

(
e(λ/2+1)−d − 1

)
,

(3.45)

where the final equality follows by the fact that E ηW = enp(η−1) for any η > 0. We can similarly
derive that

LCov
(
W, f(W )

)
= Lvol(Qℓ)

(
E
[
W E

(
{v(X1,l)}W

∣∣ W)]
− npE

[
E
(
{v(X1,l)}W

∣∣ W)])
=

(
λ

λ+ 2

)d(
E
{
W (1− (λ/2 + 1)−d)W

}
− (λ/2 + 1)d E

{
1− (λ/2 + 1)−d

}W)
=

(
λ

λ+ 2

)d(
np

(
1− (λ/2 + 1)−d

)
e−1 − (λ/2 + 1)de−1

)
= −

(
λ

λ+ 2

)d

e−1,

(3.46)
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where we use the fact that E(WηW ) = npηenp(η−1) for η > 0 in the penultimate equality. Com-
bining (3.45) and (3.46) we have

nτ 2 = (2λ+ 4)−dλ2de−2
(
e(λ/2+1)−d − 1

)
− (λ+ 2)−2dλ2de−2 =: α2, (3.47)

as desired in (3.42), and the conclusion of (3.43) holds as a result.
Now we will let λ diverge. Suppose Y1, Y2

iid∼ Unif[0, 1]d, then by (3.37), (3.47) and Lemma 3.7,
we have as λ→ ∞ that

α2 + β2 = 2−dλ2d(λ+ 2)−de−2
(
E e(λ/2)

dvol
(
C̃(Y1,Y2)

)
− 1

)
−

( λ

λ+ 2

)2d

e−2

= e−2
( λ

λ+ 2

)d(
1 +

1

2 !

(2
3

)d
+

1

3 !

(2
4

)d
+

1

4 !

(2
5

)d
+ · · ·

)
−
( λ

λ+ 2

)2d

e−2

= e−2

∞∑
i=2

1

i !

( 2

i+ 1

)d
+ o(1). (3.48)

It remains to analyse the vacancy in R := [0, 1]d \∪Lℓ=1Qℓ. Since vol(R) = 1−{λ/(λ+2)}d,
by Lemma 3.6, we have

E
(
V Rand
n −

L∑
ℓ=1

V Rand
n,ℓ

)
=

{
1−

(
λ

λ+ 2

)d}(
1− 1

n

)n

.

Set Z1, Z2
iid∼ Unif(R) and define V ′ := vol(Bd

∞(Z1, γ) ∩ Bd
∞(Z2, γ)). By Lemma 3.6 again, we

have

E
(
V Rand
n −

L∑
ℓ=1

V Rand
n,ℓ

)2

=

{
1−

(
λ

λ+ 2

)d}2

E
{
1− 2

n
+ V ′

}n

=

{
1−

(
λ

λ+ 2

)d}2 n∑
r=0

(
n

r

)(
1− 2

n

)n−r

E(V ′)r.

For any r ≥ 1, we have

E(V ′)r =

{
1−

(
λ

λ+ 2

)d}−2 ∫
R2

vol
(
Bd

∞(z1, γ) ∩Bd
∞(z2, γ)

)r
d(z1, z2)

≤
{
1−

(
λ

λ+ 2

)d}−2 ∫
R

∫
[0,1]d

n−r
1{z1 ∈ Bd

∞(z2, 2γ)} dz2 dz1

=

{
1−

(
λ

λ+ 2

)d}−1

2dn−r−1.

As n→ ∞,

Var

(
V Rand
n −

L∑
ℓ=1

V Rand
n,ℓ

)
=

{
1−

(
λ

λ+ 2

)d}2 n∑
r=1

(
n

r

)(
1− 2

n

)n−r(
E(V ′)r − n−2r

)
≤ 2d

{
1−

(
λ

λ+ 2

)d} n∑
r=1

(
n

r

)(
1− 2

n

)n−r

n−r−1

= 2d
{
1−

(
λ

λ+ 2

)d}
n−1(e−1 − e−2) + o(n−1).
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Sending first n→ ∞, and then λ→ ∞, we have by Chebyshev’s inequality that

n1/2

{
V Rand
n −

L∑
ℓ=1

V Rand
n,ℓ − E

(
V Rand
n −

L∑
ℓ=1

V Rand
n,ℓ

)} p→ 0. (3.49)

Finally, (3.11) follows by combining (3.43), (3.48) and (3.49).

3.5 Some general results for the vacancy

In this section, we present some general results related to the vacancy area, which are crucial in
supporting the proofs in Section 3.4.

Lemma3.4. SupposeQ ⊆ [0, 1]d is a hyperrectangle andR1, . . . , Rm
iid∼ Unif(Q). For δ ∈ (0, 1/2),

define

V :=
vol

(
Q \ ∪mi=1B

d
∞(Ri, δ)

)
vol(Q)

.

Suppose that m(2δ)d → r, then as m→ ∞, we have

V
p−→ e−r/vol(Q).

Proof. Draw U1, U2
iid∼ Unif(Q) independent of all other randomness. We have

E(V ) =P
(
U1 ̸∈

m⋃
i=1

Bd
∞(Ri, δ)

)
=E

[
P
( m⋂
i=1

{Ri ̸∈ Bd
∞(U1, δ)}

∣∣∣ U1

)]
=E

{
1−

vol
(
Bd

∞(U1, δ) ∩Q
)

vol(Q)

}m

.

Let Qδ := {x ∈ [0, 1]d : infy∈Qc ∥x− y∥ ≥ δ}. Then

E
{
1−

vol
(
Bd

∞(U1, δ)
)

vol(Q)

}m

≤ E(V ) ≤ E
{
1−

vol
(
Bd

∞(U1, δ)
)
1{U1∈Qδ}

vol(Q)

}m

Since vol
(
Bd

∞(U1, δ)
)
= (2δ)d and P(U1 ∈ Qδ) → 1 as m→ ∞, we have

lim
m→∞

E(V ) = lim
m→∞

{1− (2δ)d/vol(Q)}m = e−r/vol(Q).
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By Chebyshev’s inequality, it remains to show that Var(V ) → 0. We have

E(V 2) =P
(
Uj ̸∈

m⋃
i=1

Bd
∞(Ri, δ) ∀ j ∈ {1, 2}

)
=E

[
P
( m⋂
i=1

{Ri ̸∈ Bd
∞(U1, δ) ∪Bd

∞(U2, δ)}
∣∣∣ U1, U2

)]
=E

[{
1−

vol
(
Bd

∞(U1, δ) ∩Q
)

vol(Q)
−

vol
(
Bd

∞(U2, δ) ∩Q
)

vol(Q)

+
vol

(
Bd

∞(U1, δ) ∩Bd
∞(U2, δ) ∩Q

)
vol(Q)

}m]
.

Note that vol(Bd
∞(U1, δn) ∩Bd

∞(U2, δn)) is exactly equal to 0 for all large n on an event of prob-
ability 1. Thus, by a similar sandwiching argument as above, and the Dominated Convergence
Theorem, we have

lim
m→∞

E(V 2) = lim
m→∞

{1− 2(2δ)d/vol(Q)}m = e−2r/vol(Q).

Consequently Var(V ) = E(V 2)− (EV )2 → 0, when m→ ∞ as desired.

Lemma 3.5. Let a1, a2, b1, b2 ∈ [0, 1] such that ai < bi for i = 1, 2. Then Q = [a1, b1] × [a2, b2]
is a rectanlge in [0, 1]2. Let m1,m2 ∈ N, and L = L1 × L2, where Li = {ai + (bi − ai)/(mi +
1), ai+2(bi−ai)/(mi+1), . . . , ai+mi(bi−ai)/(mi+1)}, i = 1, 2. Suppose k := k(m1,m2) ∈ N
such that k ≤ m1 ∧m2 and k/mi → si ∈ (0, 1), i = 1, 2. Let G = {U1, . . . , Uk} ∼ Unif

((L1

k

))
and F = {V1, . . . , Vk} ∼ Unif

((L2

k

))
be independent random sets. Let σ be a uniform random

pertumation of [k], and write Ri = (Ui, Vσ(i)), for i = 1, . . . , k. Define

V =
vol(Q \ ∪ki=1B

2
∞(Ri, δ))

vol(Q)
,

where the radius δ satisfies that k(2δ)2 → r ∈ R+, as m1,m2 → ∞. Then we have

EV =

(
1− 2δk

(b2 − a2)m1

) 2δm1
b1−a1

+O(m
−1/2
1 ) → e−r/vol(Q)

as m1,m2 → ∞.

Proof. For any W = (W1,W2) ∼ Unif(Q), let Nx denote the number of Ri for which the cor-
responding value of Ui falls within the δ-neighborhood of W1. Specifically, Nx = |{i ∈ [k] :
d∞(Ui,W1) ≤ δ}|. Conditioning on W , the random variable Nx follows a Hypergeometric dis-
tribution Hyper(k; 2δm1/(b1 − a1),m1).1 Equivalently, by the symmetric property of the Hy-
pergeometric distribution, conditioning on W , we have Nx ∼ Hyper(2δm1/(b1 − a1); k,m1).
Employing Lemma 3.11, let ξ1 ∼ Bin(2δm1/(b1 − a1), k/m1), we have for any w ∈ Q,

∥PNx|W=w − P ξ1∥TV ≤ 2δm1

(m1 − 1)(b1 − a1)
. (3.50)

1Hyper(k;m,n): number of success in k draws without replacement, from a population of n that contains m
objects with the desirable characteristics.
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Furthermore, let Nxy denote the number of Ri covered by B2
∞(W, δ), i.e. Nxy = |{i ∈ [k] :

d∞(W,Ri) < δ}|. Note that givenNx number ofRi with the corresponding Ui falls within the δ-
neighborhood ofW1, the value ofNxy can be obtained by counting how many out of these points
have their Vi values within the δ-neighborhood ofW2. Therefore, conditioning onNx andW , we
have Nxy ∼ Hyper(Nx; 2δm2/(b2 − a2),m2). Let ξ2 be a random variable such that conditional
on ξ1, ξ2 follows a Binomial distribution Bin(ξ1, 2δ/(b2−a2)). Then for any v ∈ [2δm1/(b1−a1)]
and w ∈ Q, the similar the Binomial approximation as (3.50) implies that

∥PNxy |Nx=v,W=w − P ξ2|ξ1=v∥TV ≤ v − 1

m2 − 1
. (3.51)

Then for any w ∈ Q and A ⊆ N ∪ {0}, consider∣∣PNxy |W=w(A)− P ξ2(A)
∣∣

=
∣∣∣ ∑
v∈N∪{0}

(
P(Nxy ∈ A|Nx = v,W = w)P(Nx = v|W = w)− P(ξ2 ∈ A|ξ1 = v)P(ξ1 = v)

)∣∣∣
≤
∣∣∣ ∑
v∈N∪{0}

(
P(Nxy ∈ A|Nx = v,W = w)− P(ξ2 ∈ A|ξ1 = v)

)
P(Nx = v|W = w)

∣∣∣
+
∣∣∣ ∑
v∈N∪{0}

P(ξ2 ∈ A|ξ1 = v)
(
P(Nx = v|W = w)− P(ξ1 = v)

)∣∣∣
≤
∣∣∣ ∑
v∈N∪{0}

v

m2 − 1
P(Nx = v|W = w)

∣∣∣+ 4δm1

(m1 − 1)(b1 − a1)

=
2δk

(m2 − 1)(b1 − a1)
+

4δm1

(m1 − 1)(b1 − a1)
,

where we used (3.50) and (3.51) in the penultimate inequality. Consequently, we have

∥PNxy |W=w − P ξ2∥TV ≤ Cδm1

(m1 ∧m2 − 1)(b1 − a1)
, as m1,m2 → ∞, (3.52)

for some universal constant C > 0.
Note the marginal distribution of ξ2 is Bin

(
2δm1/(b1 − a1), 2δk/((b2 − a2)m1)

)
, together

with (3.52) we have

EV = E
[
P
( k⋂
i=1

{
Ri ̸∈ B2

∞(W, δ)
} ∣∣ W)]

= E
[
P(Nxy = 0

∣∣ W )
]

= P(ξ2 = 0) +
Cδm1

(m1 ∧m2 − 1)(b1 − a1)

=
(
1− 2δk

(b2 − a2)m1

) 2δm1
b1−a1 +

Cδm1

(m1 ∧m2 − 1)(b1 − a1)
→ e−r/vol(Q),

as m1,m2 → ∞.
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Lemma 3.6. Define P is a d-dimensional cube with edge length l and fixQ ⊆ P . LetR1, . . . , Rn
iid∼

PR ∈ P(P ) and for any δ > 0 define

V :=
vol

(
Q \

⋃n
i=1B∞(Ri, δ;P )

)
vol(Q)

.

For any k ∈ N, letX1, . . . , Xk
iid∼ Unif(Q) be a set of random variables independent withR1, . . . , Rn,

then

EV k =E
[{

1− PR
( k⋃
j=1

B∞(Xj, δ;P )
)}n]

.

Furthermore, if PR = Unif(P ),

(i) then we have

E(V k) = E
[{

1−
vol

(⋃k
j=1B∞(Xi, δ;P )

)
vol(P )

}n]
.

(ii) if Q is a subcube of P with the same center but the edge length becomes l− 2ϵ where ϵ < l/2,
then when δ < l/4 + ϵ/2, we have

E(V ) =
{
1− (2δ)d

vol(P )

}n
,

E(V 2) = E
[{

1− vol(P )−1
(
2(2δ)d − vol

(
B∞(X1, δ;P ) ∩B∞(X2, δ;P )

)}n]
=

n∑
r=1

(
n

r

)(
1− 2(2δ)d

vol(P )

)n−r
vol(P )−r

( 2(2δ)r+1

(r + 1)(l − 2ϵ)

)d
+
(
1− 2(2δ)d

vol(P )

)n
.

Thus

Var(V ) =
n∑
r=1

(
n

r

)(
1− 2(2δ)d

vol(P )

)n−r(( 2(2δ)r+1

(r + 1)(l − 2ϵ)

)d
vol(P )−r − (2δ)2rdvol(P )−2r

)
Proof. We observe that

EV k = E
{ k∏
j=1

P
(
Xj /∈

n⋃
i=1

B∞(Ri, δ;P )
∣∣∣ R1, . . . , Rn

)}
= P

(
Xj /∈ B∞(Ri, δ;P ) ∀ i ∈ [n], j ∈ [k]

)
= P

(
Ri /∈ B∞(Xj, δ;P ) ∀ i ∈ [n], j ∈ [k]

)
= E

{ n∏
i=1

P
(
Ri /∈

k⋃
j=1

B∞(Xj, δ;P )
∣∣∣ X1, . . . , Xk

)}

= E
[{

1− PR
( k⋃
j=1

B∞(Xj, δ;P )
)}n]

,
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which equals to the following when PR is the uniform distribution on P ,

E(V k) = E
[{

1−
vol

(⋃k
j=1B∞(Xj, δ;P )

)
vol(P )

}n]
.

Now, we work under the assumption of (ii). If k = 1, since vol(B∞(X1, δ;P )) = (2δ)d, we
have E(V ) =

{
1− (2δ)d

vol(P )

}n. If k = 2, we have

vol
(
B∞(X1, δ;P ) ∪B∞(X2, δ;P )

)
= 2vol

(
B∞(X1, δ;P )

)
− vol

(
B∞(X1, δ;P ) ∩B∞(X2, δ;P )

)
= 2(2δ)d − vol

(
B∞(X1, δ;P ) ∩B∞(X2, δ;P )

)
.

By Lemma 3.7, it follows that

EV 2 = E
[{

1− vol(P )−1
(
2(2δ)d − vol

(
B∞(X1, δ;P ) ∩B∞(X2, δ;P )

))}n]
=

n∑
r=1

(
n

r

)(
1− 2(2δ)d

vol(P )

)n−r
vol(P )−r

( 2(2δ)r+1

(r + 1)(l − 2ϵ)

)d
+
(
1− 2(2δ)d

vol(P )

)n
,

as desired

Lemma 3.7. Define P as a d-dimensional cube with edge length l and let Q ⊆ P be a subcube of
P with the same center and edge length l− 2ϵ, where ϵ ∈ (0, l/2). Let X1, X2

iid∼ Unif(Q). Then for
δ ∈ (0, l/4 + ϵ/2) and any s ∈ N, we have

E
{
vol

(
B∞(X1, δ;P ) ∩B∞(X2, δ;P )

)}s
=

(
2(2δ)s+1

(s+ 1)(l − 2ϵ)

)d

.

Proof. First of all, by the translational symmetry of the periodic edge, we observe that

vol
(
B∞(X1, δ;P ) ∪B∞(X2, δ;P )

) d
= vol

(
B∞(X1, δ;P ) ∪B∞(p0, δ;P )

)
,

where p0 := (p0,1, . . . , p0,d)
⊤ denotes the center of cube P . For any ℓ ∈ [d], we write P |ℓ as the

projected space of P onto the ℓ-th coordinate, i.e. P = ⊗d
ℓ=1P |ℓ, and X1 = (X1,1, . . . , X1,d)

⊤.
Since the intersection of two cube remains a cube, when δ ∈ (0, l/4 + ϵ/2) and ϵ ∈ (0, l/2) the
volume of the intersection area can be expressed as

vol
(
B∞(X1, δ;P ) ∩B∞(p0, δ;P )

)
=

d∏
ℓ=1

vol(B∞(X1,ℓ, δ;P |ℓ) ∩B∞(p0,ℓ, δ;P |ℓ))

=
d∏
ℓ=1

(
−|X1,ℓ − p0,ℓ|+ 2δ

)
+
.

Consequently,

E
{
vol

(
B∞(X1, δ;P ) ∩B∞(X2, δ;P )

)}s
=

d∏
ℓ=1

∫ p0,ℓ+l/2−ϵ

p0,ℓ−l/2+ϵ

{
(−|x1,ℓ − p0,ℓ|+ 2δ)+

}s
l − 2ϵ

dx1,ℓ

=

(
2(2δ)s+1

(s+ 1)(l − 2ϵ)

)d

,

as desired.
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3.6 Additional Proofs

3.6.1 Proof of Lemma 3.1

Proof. Consider the homogeneous Poisson point process ν onD+ := {(x, y) : 0 ≤ y ≤ f+(x)} ⊆
Rd × [0,∞) with the intensity constantly equal to λ. Then ν(D+)

d
= N ∼ Poi(λα). Suppose

Zi = (X̃i, Yi), i = 1, . . . , N , be the (random) support of ν, where each X̃i ∈ Rd and Yi ∈ [0,∞],
we can write ν = 1

N

∑N
i=1 δZi

.
Define D := {(x, y) : 0 ≤ y ≤ f(x)} ⊆ Rd × [0,∞), let I := {i ∈ [N ] : Zi ∈ D}

and J := {i ∈ [N ] : Zi ∈ D+ \ D}, then M1 := |I| = ν(D) ∼ Poi(λ) and M2 := |J | =
ν(D+ \D) ∼ Poi(λ(α− 1)). By the complete independence property [see, e.g. Kin92, pp. 11] of
the poisson process, we have 1

M1

∑
i∈I δZi

and 1
M2

∑
i∈J δZi

are two independent homogeneous
Poisson point processes onD andD+ \D respectively. Moreover, by the mapping Theorem [see,
e.g. Kin92, Section 2.3], 1

M1

∑
i∈I δX̃i

and 1
M2

∑
i∈J δX̃i

are Poisson processes on Rd with intensity
function λf and λ(f+ − f) respectively. Hence by the conditional property of Poisson process
[see, e.g. Kin92, Section 2.4], we have

(X1, . . . , XM) |M d
= (X̃i : i ∈ I) |M1

iid∼ f, (3.53)

(XM+1, . . . , XN) | N −M
d
= (X̃i : i ∈ J ) |M2

iid∼ (f+ − f)/(α− 1). (3.54)

By observing that (M,N −M)
d
= (M1,M2) ∼ Poi(λ) ⊗ Poi(λ(α − 1)) and using the fact that

X̃1, . . . , X̃N are permutation invariant condition on N , we must have(
Xσ(1), . . . , Xσ(N) | N

) d
=

(
X̃σ(1), . . . , X̃σ(N) | N

)
.

Finally, applying a similar argument to that used in (3.53) and (3.54) to Poisson process ν, we
obtain that (X̃1, . . . , X̃N) | N

iid∼ f+/α, which proves the desired result.

3.6.2 Proof of Lemma 3.3
Proof. For any x ∈ R, we have

sup
x∈R

∣∣∣∣P(Xn ≤ µ+ x
√
α2 + β2

)
− Φ(x)

∣∣∣∣
=sup

x∈R

∣∣∣∣E{P(Xn −Mn√
Ln

≤ µ−Mn + x
√
α2 + β2

√
Ln

∣∣∣∣ Fn

)}
− Φ(x)

∣∣∣∣
=sup

x∈R

∣∣∣∣E{Φ(µ−Mn + x
√
α2 + β2

√
Ln

)}
− Φ(x)

∣∣∣∣+ o(1), (3.55)

where we use condition (3.34) in the final step. By the Slutsky’s theorem we have for each x ∈ R
that

µ−Mn + x
√
α2 + β2

√
Ln

d−→ N
(
x
√
α2 + β2

β
,
α2

β2

)
.
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Consequently, we have for Z ∼ N(0, 1) independent of all other randomness in the lemma that

E
{
Φ

(
µ−Mn + x

√
α2 + β2

√
Ln

)}
= P

(
Z − µ−Mn + x

√
α2 + β2

√
Ln

≤ 0

)
= Φ(x) + o(1).

The conclusion holds by combining the above with (3.55), and using Chow and Teicher [CT88,
Lemma 3, pp.265].

3.7 Auxiliary results

Lemma 3.8. For n, L ∈ N, let p := 1/L and suppose (N1, . . . , NL) ∼ Multin(n; (p, . . . , p)).
Consider the asymptotic regime where n→ ∞ and L is fixed. Suppose a, b ≥ 1 satisfies p(a− 1) =
O(1/n) and p(b− 1) = O(1/n), then for any and ℓ, k ∈ [L], we have

Cov(aNℓ , bNk) = O(n−2).

Proof. We first assume that ℓ ̸= k. We write α = p(a− 1) and β = p(b− 1) for simplicity. Using
the moment generating function of Multinomial distribution, we observe that,

E(aNℓ) = (1 + α)n

E(aNℓbNk) = (1 + α + β)n.

Using the above identities and the Taylor expansion

|Cov(aNℓ , bNk)| = |(1 + α + β)n − (1 + α + β + αβ)n|

= αβ
n−1∑
i=0

(1 + α + β)n−1−i(αβ)i

≤ αβ(1 + α + β)n
n−1∑
i=0

(αβ)i = O(αβ) = O(n−2).

It remains to check the case where ℓ = k. For this, define η = p(ab− 1),

|Cov(aNℓ , bNk)| = {1 + p(ab− 1)}n − {1 + p(a− 1)}n{1 + p(b− 1)}n

= (1 + αβ/p+ α + β)n − (1 + α + β + αβ)n

= αβ(1/p− 1)
n−1∑
i=0

(1 + α + β + αβ)n−1−i(αβ/p− αβ)i

≤ αβ(1/p− 1)(1 + α)n(1 + β)n
n−1∑
i=0

(αβ/p− αβ)i = O(αβ) = O(n−2),

as desired.

Lemma 3.9. Let {an}n≥1 be a real sequence such that an = O(n−1), then we have (1 + an)
n =

(1 + o(1))enan .
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Proof. Since an = O(n−1), the result immediately follows by

(1 + an)
n = en log(1+an) = en(an+o(an)) = (1 + o(1))enan .

Lemma 3.10. Let (X, Y ) be a pair of jointly distributed random variables on Rd1 ×Rd2 . Let U and
V be continuous random variables on Rd1 and Rd2 , chosen such that U ⊥⊥ V | (X, Y ) and that

U ∈ argmin
Ũ∼PU

{E ∥X − Ũ∥2} and V ∈ argmin
Ṽ∼PV

{E ∥Y − Ṽ ∥2}. (3.56)

Let P (X,Y ) be the joint distribution of (X, Y ) with marginals PX and P Y , and similarly P (U,V ), PU ,
P V the joint and marginal distributions of (U, V ). Then for any convex function f : R → R∪{∞}
with f(1) = 0 (cf. Definition 3.1), we have

Df (P
(X,Y ) ∥PX ⊗ P Y ) = Df (P

(U,V ) ∥PU ⊗ P V ).

Proof. Observe thatU and V are solutions for optimal transport problems (3.56). Let π ∈ P(R2d1)
be the optimal coupling (joint distribution) of (X,U) and let γ ∈ P(R2d2) be the optimal cou-
plings of (Y, V ). Let PU |X=x and P V |Y=y be the corresponding conditional distributions of U
given X = x and V given Y = y respectively. Note that these conditional distributions are
well-defined up to a PX-measure 0 set of x-values, say Ex, and a P Y -measure 0 set of y-values,
say Ey. The fact that U ⊥⊥ V | (X, Y ) means that PU |X=x ⊗ P V |Y=y is the conditional distri-
bution of (U, V ) given (X, Y ) = (x, y). Note again that PU |X=x ⊗ P V |Y=y is well-defined up to
(Ex × Rd2) ∪ (Rd1 × Ey), which has zero measure with respect to both P (X,Y ) and PX ⊗ P Y .
Therefore, we have that

P (U,V ) =

∫
Rd1×Rd2

PU |X=x ⊗ P V |Y=y dP (X,Y )(x, y)

and
PU ⊗ P V =

∫
Rd1×Rd2

PU |X=x ⊗ P V |Y=y d(PX ⊗ P Y )(x, y).

Thus, using the data processing inequality Polyanskiy and Wu [PW25, Theorem 7.4], we have

Df (P
(X,Y ) ∥PX ⊗ P Y ) ≥ Df (P

(U,V ) ∥PU ⊗ P V ).

Since U is absolutely continuous, by Brenier’s theorem [see e.g. Vil21, Theorem 2.12], there
exists a convex function φ : Rd1 → R such that dπ(x, u) = dPU(u)δ{y=∇φ(u)}. In other words,
the optimal transport from U toX is the function ∇φ (which is PU -almost everywhere uniquely
defined), and so X = ∇φ(U). Similarly, we have Y = ∇ψ(V ) for some convex function
ψ : Rd2 → R. Consequently, we have that X and Y are deterministic, so in particular, condi-
tionally independent, given (U, V ). This allows us to run a symmetric argument with conditional
distribution of (X, Y ) given (U, V ) to obtain a data processing inequality in the reverse direction,
thus establishing the desired equality.

106



Chapter 3 Coverage Correlation Coefficient: Beyond Functional Correlation3.7 Auxiliary results

Lemma 3.11 ([Ehm91, Theorem 2]). Given k, n,m ∈ N such that k ≤ m ≤ n. LetH be a random
variable follows a Hypergeometric distribution Hyper(k;m,n). Let B ∼ Bin(k,m/n), then we
have

∥PH − PB∥TV ≤ k − 1

n− 1
.

Lemma 3.12 ([PW25]). Suppose X ∼ PX ∈ P(Rk) and Y ∼ P Y ∈ P(Rl), where k, l ≥ 1. Then
for given any convex function f : (0,∞) → R with f(1) = 0, we have

(i) Df (P
X∥P Y ) ≥ 0, and if f is strict convex at 1, then the equality holds if and only if PX =

P Y ;

(ii) for a random variable Z ∼ PZ ∈ P(Rm), m ≥ 1, such that X ⊥⊥ Y |Z , then we have
Df (P

X∥P Y ) ≤ Df (P
X∥PZ).

(iii) For any sequence of random variables Xn and Yn such that PXn
w→ PX and P Yn w→ P Y , we

have

lim inf
n→∞

Df (P
Xn∥P Yn) ≥ Df (P

X∥P Y ).
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[HPŠ10] Marc Hallin, Davy Paindaveine, and Miroslav Šiman. Multivariate quantiles and multiple-
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[Pfi+18] Niklas Pfister, Peter Bühlmann, Bernhard Schölkopf, and Jonas Peters. Kernel-based
tests for joint independence. Journal of the Royal Statistical Society Series B: Statistical
Methodology 80.1 (2018), pp. 5–31 (cit. on p. 19).

[PJL20] Ankit Pensia, Varun Jog, and Po-Ling Loh. Robust regression with covariate filtering:
Heavy tails and adversarial contamination. arXiv preprint arXiv:2009.12976 (2020)
(cit. on p. 31).
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[TOS22] Dag Tjøstheim, Håkon Otneim, and Bård Støve. Statistical dependence: Beyond Pear-
son’s ρ. Statistical science 37.1 (2022), pp. 90–109 (cit. on pp. 19, 77).

[Tuk75] John W. Tukey. Mathematics and the picturing of data. Proceedings of the Interna-
tional Congress of Mathematicians. Vol. 2. 1975, pp. 523–531 (cit. on pp. 15, 23, 32,
75).

[Van00] Aad W Van der Vaart. Asymptotic Statistics. Vol. 3. Cambridge university press, 2000
(cit. on p. 17).

[VC15] Vladimir N. Vapnik and A. Ya Chervonenkis. On the uniform convergence of rela-
tive frequencies of events to their probabilities. Measures of complexity: festschrift for
alexey chervonenkis. Springer, 2015, pp. 11–30 (cit. on p. 56).

[Ver18] Roman Vershynin. High-Dimensional Probability: An Introduction with Applications
in Data Science. Cambridge University Press, 2018 (cit. on p. 37).

[VG20] Alexander H.S. Vargo and Anna C. Gilbert. A rank-based marker selection method
for high throughput scRNA-seq data. BMC Bioinformatics 21 (2020), pp. 1–51 (cit. on
p. 15).

[Vil09] Cédric Villani. Optimal transport: old and new. Springer, 2009 (cit. on pp. 49, 69).
[Vil21] Cédric Villani. Topics in optimal transportation. American Mathematical Society, 2021

(cit. on pp. 43, 46, 47, 53, 69, 106).
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