The coverage correlation coefficient: Going beyond functional dependence. Xuzhi Yang, Mona Azadikia, Tengyao Wang

Geomtry of Chatterjee's correlation coefficient

Given random samples $(X_1, Y_1), \ldots, (X_n, Y_n) \stackrel{\text{iid}}{\sim} P^{(X,Y)} \in \mathcal{P}(\mathbb{R}^{d_X+d_Y})$ with $d_X, d_Y \geq 1$. The goal is to construct a coefficient of correlation to measure the dependency between random vectors X and Y.

Chatterjee's correlation coefficient ($d_X = d_Y = 1$): Assume X_1 i = 1, ..., n. Let

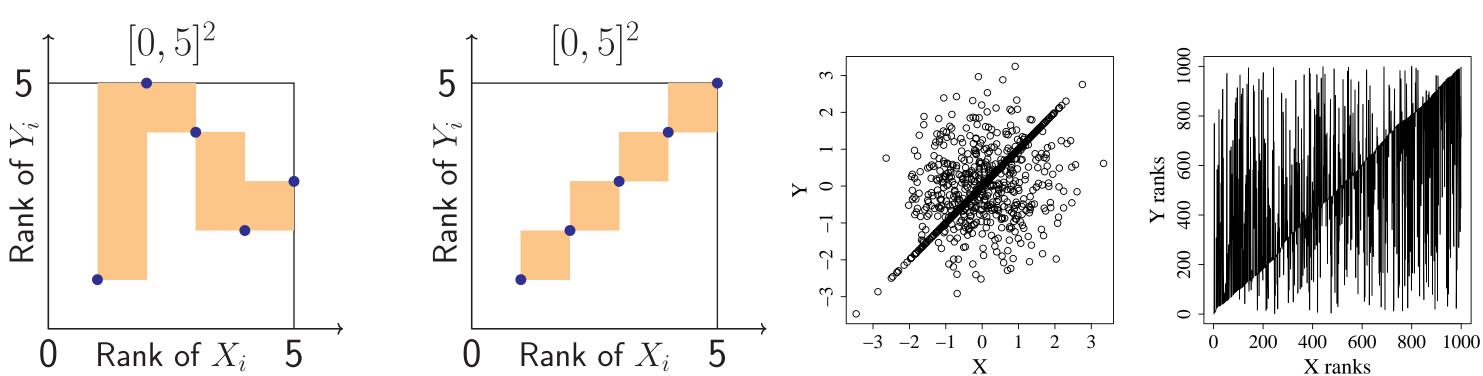
$$\xi_n := 1 - \frac{\sum_{i=1}^n |r_{i+1} - r_{i+1}|}{(n^2 - 1)/3}$$

It is shown that ξ_n

• consistently estimates a population quantity equals to 0 if and only if $X \perp Y$, and equals to 1 if and only if Y = f(X) for some measurable function f;

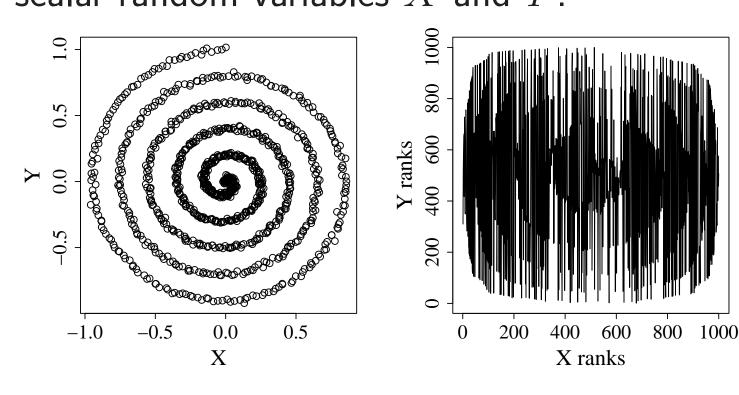
- allows a distribution-free null asymptotic theory;
- can be computed in time $O(n \log n)$.

Geometric intuition: let n = 5, we visualise the numerator of (1) as follows:



 \Rightarrow Independence data can induce larger covered area!

• However, it can cover to much area under non-functional correlation (see the figure below); • It only computes correlation of scalar random variables X and Y.



Coverage correlation coefficient

In this work we propose a new coefficient of correlation that

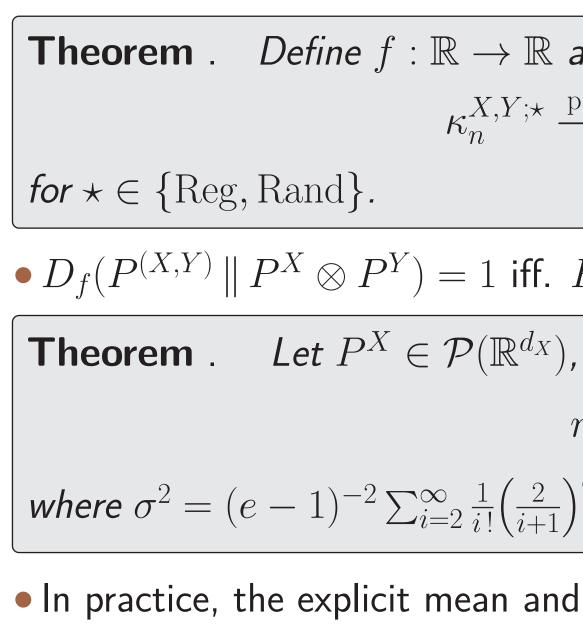
- can measure the dependence between random vectors;
- enjoys a distribution-free null asymptotic theory;
- consistently estimate a population quantity equals to 0 if and onl only if $P^{(X,Y)} \perp P^X \otimes P^Y$;
- allows a $O(n \log n)$ algorithm under the case of univariate marginals.

Department of Statistics, LSE

$$< X_2 < \cdots < X_n$$
, let $r_i = \operatorname{Rank}(Y_i)$ for

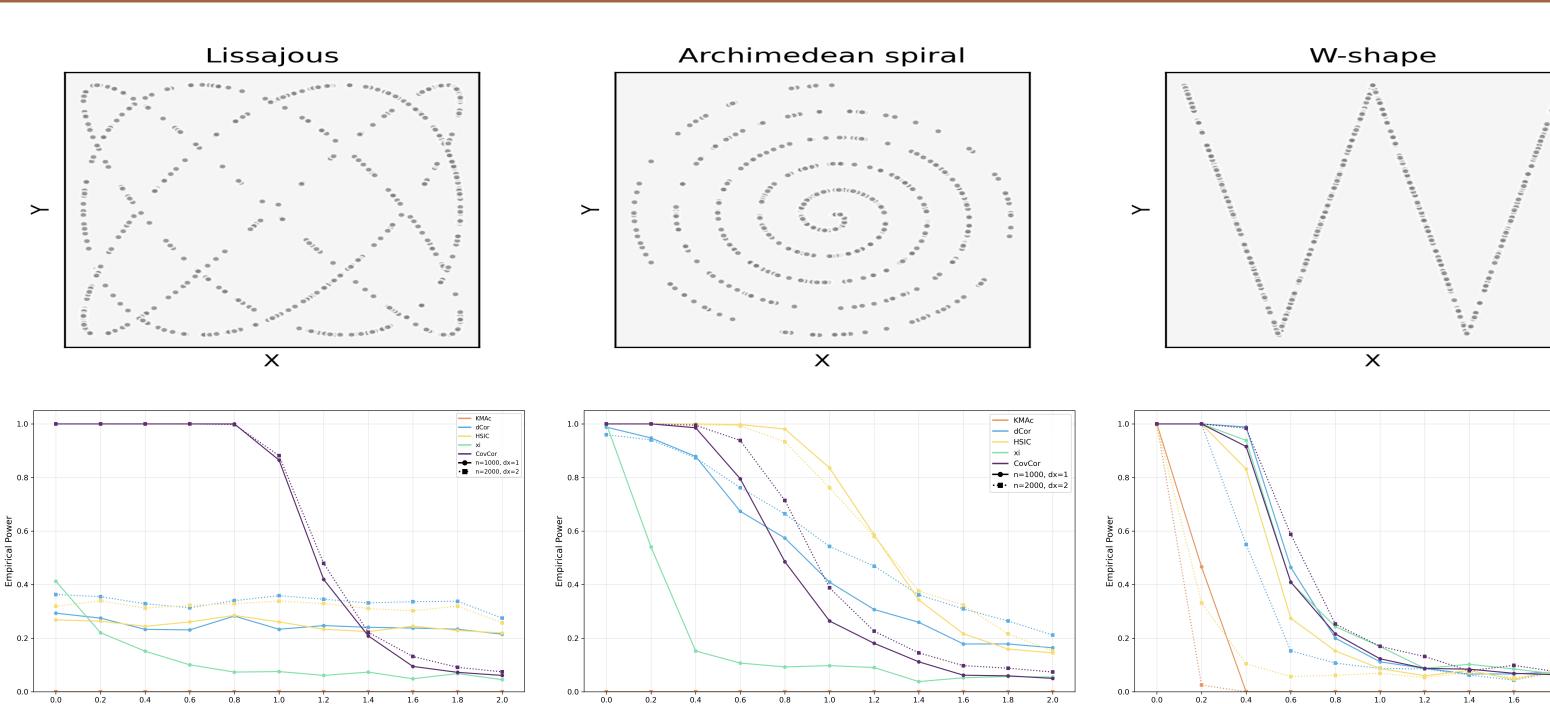
(1)

by if
$$P^{(X,Y)} = P^X \otimes P^Y$$
, equals to 1 if and



Noise level

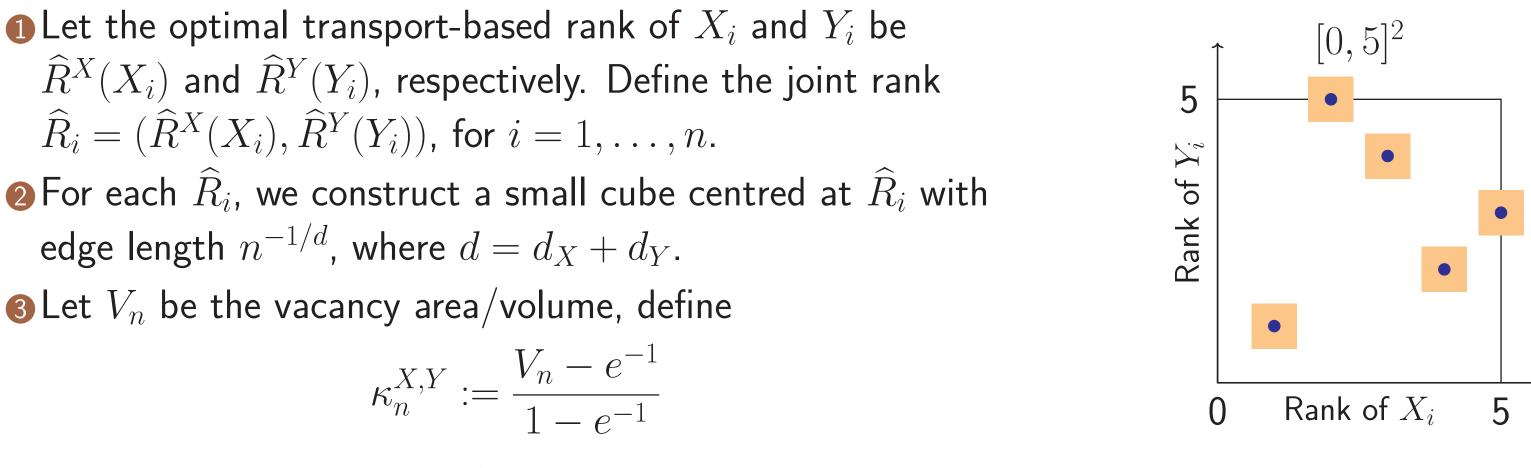
$$E(V_{n,\gamma}^{\text{Rand}}) = (1 - 1/n)^n, \quad \text{Var}(V_{n,\gamma}^{\text{Rand}}) = \sum_{r=2}^n \binom{n}{r} \left(1 - \frac{2}{n}\right)^{n-r} \left(\left(\frac{2}{r+1}\right)^d n^{-r-1} - n^{-1}\right)^{n-r} \left(\frac{2}{r+1}\right)^{n-r-1} + \frac{2}{r} \left(\frac{2}$$



Noise level

Noise level

Coverage correlation coefficient



Consistency and asymptotic normality

• In practice, the explicit mean and variance for $\kappa_n^{X,Y;\text{Rand}}$ is available by

Simulations

